Alexandre Bonvin bio photo

Computational Structural Biology group focusing on dissecting, understanding and predicting biomolecular interactions at the molecular level.

Email Twitter Github Youtube Subscribe


Supported by:




Antibody-antigen modelling tutorial using a local version of HADDOCK3

This tutorial consists of the following sections:



Introduction

This tutorial demonstrates the use of the new modular HADDOCK3 version for predicting the structure of an antibody-antigen complex using knowledge of the hypervariable loops on the antibody and either the entire surface or an epitope identified from NMR chemical shift perturbation data for the antigen to guide the docking.

An antibody is a large protein that generally works by attaching itself to an antigen, which is a unique site of the pathogen. The binding harnesses the immune system to directly attack and destroy the pathogen. Antibodies can be highly specific while showing low immunogenicity, which is achieved by their unique structure. The fragment crystallizable region (Fc region) activates the immune response and is species-specific, i.e. the human Fc region should not induce an immune response in humans. The fragment antigen-binding region (Fab region) needs to be highly variable to be able to bind to antigens of various nature (high specificity). In this tutorial we will concentrate on the terminal variable domain (Fv) of the Fab region.

The small part of the Fab region that binds the antigen is called paratope. The part of the antigen that binds to an antibody is called epitope. The paratope consists of six highly flexible loops, known as complementarity-determining regions (CDRs) or hypervariable loops whose sequence and conformation are altered to bind to different antigens. CDRs are shown in red in the figure below:

In this tutorial we will be working with Interleukin-1β (IL-1β) (PDB code 4I1B) as an antigen and its highly specific monoclonal antibody gevokizumab (PDB code 4G6K) (PDB code of the complex 4G6M).

Throughout the tutorial, colored text will be used to refer to questions or instructions, and/or PyMOL commands.

This is a question prompt: try answering it! This an instruction prompt: follow it! This is a PyMOL prompt: write this in the PyMOL command line prompt! This is a Linux prompt: insert the commands in the terminal!



Setup/Requirements

In order to follow this tutorial you will need to work on a Linux or MacOSX system. We will also make use of PyMOL (freely available for most operating systems) in order to visualize the input and output data. We will provide you links to download the various required software and data.

Further we are providing pre-processed PDB files for docking and analysis (but the preprocessing of those files will also be explained in this tutorial). The files have been processed to facilitate their use in HADDOCK and for allowing comparison with the known reference structure of the complex. For this download and unzip the following zip archive and note the location of the extracted PDB files in your system. In it you should find the following directories:

  • haddock3: Contains HADDOCK3 configuration and job files for the various scenarios in this tutorial
  • pdbs: Contains the pre-processed PDB files
  • plots: Contains pre-generated html plots for the various scenarios in this tutorial
  • restraints: Contains the interface information and the correspond restraint files for HADDOCK
  • runs: Contains pre-calculated (partial) run results for the various scenarios in this tutorial
  • scripts: Contains a variety of scripts used in this tutorial

Setup for the ISGC2023 HADDOCK workshop in Taipei

For this workshop we will be making use of the NMRBox resources. NMRbox offers cloud-based virtual machines for executing various biomolecular software that can complement NMR (Nuclear Magnetic Resonance). NMRbox users can choose from a large number of software packages that focus on research topics as metabolomics, molecular dynamics, structure, intrinsically disordered proteins or binding. One can search through all available packages on https://nmrbox.nmrhub.org/software.

Register on NMRBox

To use virtual machines through NMRbox, one needs to register, preferably with their institutional account here. Since the registration has to be manually validated and it can take up to two business days, we strongly encourage students to do so before the course starts. After a successful validation you will receive an e-mail with your NMRbox username and password that you will be using while accessing your virtual machine.

Accessing NMRbox

To run the virtual machine on a local computer, one needs to install VNCviewer. With the RealVNC client connects your computer to the NMRbox servers with a virtual desktop - graphical interface. More information about the VNC viewer is in the FAQ of NMRbox. To choose a virtual machine, first log into the user dashboard https://nmrbox.nmrhub.org/user-dashboard. Download the zip file with bookmarks for the production NMRbox virtual machines. Click File -> Import connections and select the downloaded zip file. After importing, you will see the current release virtual machines. You can use any available virtual machine. The user-dashboard provides information on machine capabilities and recent compute load, thus it is clever to choose a less occupied one. Double click on one of the VMs. An “Authentication” panel appears. Enter your NMRbox username and password. Click on the “Remember password” box to have RealVNC save your information. By default, your desktop remains running when you disconnect from it. If you login to your VM repeatedly you will see a screen symbol next to the VM you connected to recently. For more details follow the quick start guide for using NMRbox with VNC viewer here.

If everything runs correctly you should have a window with your virtual desktop open. In the virtual desktop you have an access to the internet with Chromium as browser or use various programs, including Pymol. Thus, you could run all three stages of this course here or transfer data between your local machine and the virtual machine. File transfer to and from the VM is quite straightforward and it is described here: https://nmrbox.nmrhub.org/faqs/file-transfer.

In this workshop we will be working with the command line. For those of you who are not familiar with it, a lot of useful tutorials and documentation can be found here. To find the terminal, look for a black icon with a $_ symbol on it. Once you are familiar with the command line, you can start the tutorial.

Further NMRbox documentation can be found here.

Once you are done using your VM just log out of it using the top menu button as shown in this 9s video.

Important: In order to participate to the ISGC2023 HADDOCK workshop, once you have an account on NMRBox, make sure to register for the workshop on NMRBox. In that was all the data required for the workshop will be automatically copied to your home directory.

Tutorial setup on NMRbox

Connect to a NMRBox VM and open a terminal window

From the terminal setup the required environment (this activates haddock3) with:

source ~/EVENTS/2023-haddock-isgc-taipei/setup.sh

Then change directory to the workshop directory (the data have been copied automatically to your home dir if you registered for the event):

cd ~/EVENTS/2023-haddock-isgc-taipei/HADDOCK3-antibody-antigen

You will find in that directory all input and precalculatd data and scripts required to run this tutorial.


Setup for the 2022 EU-ASEAN HPC school on Fugaku

View details expand_more The software and data required for this tutorial have been pre-installed on Fugaku. In order to run the tutorial, first copy the required data into your home directory on fugagku: tar xfz /vol0601/share/ra020021/LifeScience/20221208_Bonvin/HADDOCK3-antibody-antigen.tgz This will create the `HADDOCK3-antibody-antigen` directory with all necessary data and script and job examples ready for submission to the batch system. HADDOCK3 has been pre-installed, both on the login node and on the compute nodes. To active HADDOCK3 on the login node type: source /vol0601/share/ra020021/LifeScience/20221208_Bonvin/miniconda3/etc/profile.d/conda.sh
conda activate haddock3
You will now have all the require software in place to run the various steps of this tutorial. In case you would start an interactive session on a node, e.g. with the following command: pjsub \-\-interact \-\-sparam wait-time=60 \-L \"elapse=02:00:00\" \-x \"PJM_LLIO_GFSCACHE=/vol0003:/vol0006\" use then the following command to active the HADDOCK3 environment for the arm8 architecture of the compute nodes: source /vol0601/share/ra020021/LifeScience/20221208_Bonvin/miniconda3-arm8/etc/profile.d/conda.sh
conda activate haddock3
This is the command you will also find in the example job script for batch submission.


HADDOCK general concepts

HADDOCK (see https://www.bonvinlab.org/software/haddock2.4) is a collection of python scripts derived from ARIA (https://aria.pasteur.fr) that harness the power of CNS (Crystallography and NMR System – https://cns-online.org) for structure calculation of molecular complexes. What distinguishes HADDOCK from other docking software is its ability, inherited from CNS, to incorporate experimental data as restraints and use these to guide the docking process alongside traditional energetics and shape complementarity. Moreover, the intimate coupling with CNS endows HADDOCK with the ability to actually produce models of sufficient quality to be archived in the Protein Data Bank.

A central aspect to HADDOCK is the definition of Ambiguous Interaction Restraints or AIRs. These allow the translation of raw data such as NMR chemical shift perturbation or mutagenesis experiments into distance restraints that are incorporated in the energy function used in the calculations. AIRs are defined through a list of residues that fall under two categories: active and passive. Generally, active residues are those of central importance for the interaction, such as residues whose knockouts abolish the interaction or those where the chemical shift perturbation is higher. Throughout the simulation, these active residues are restrained to be part of the interface, if possible, otherwise incurring in a scoring penalty. Passive residues are those that contribute for the interaction, but are deemed of less importance. If such a residue does not belong in the interface there is no scoring penalty. Hence, a careful selection of which residues are active and which are passive is critical for the success of the docking.



A brief introduction to HADDOCK3

HADDOCK3 is the next generation integrative modelling software in the long-lasting HADDOCK project. It represents a complete rethinking and rewriting of the HADDOCK2.X series, implementing a new way to interact with HADDOCK and offering new features to users who can now define custom workflows.

In the previous HADDOCK2.x versions, users had access to a highly parameterisable yet rigid simulation pipeline composed of three steps: rigid-body docking (it0), semi-flexible refinement (it1), and final refinement (itw).

In HADDOCK3, users have the freedom to configure docking workflows into functional pipelines by combining the different HADDOCK3 modules, thus adapting the workflows to their projects. HADDOCK3 has therefore developed to truthfully work like a puzzle of many pieces (simulation modules) that users can combine freely. To this end, the “old” HADDOCK machinery has been modularized, and several new modules added, including third-party software additions. As a result, the modularization achieved in HADDOCK3 allows users to duplicate steps within one workflow (e.g., to repeat twice the it1 stage of the HADDOCK2.x rigid workflow).

Note that, for simplification purposes, at this time, not all functionalities of HADDOCK2.x have been ported to HADDOCK3, which does not (yet) support NMR RDC, PCS and diffusion anisotropy restraints, cryo-EM restraints and coarse-graining. Any type of information that can be converted into ambiguous interaction restraints can, however, be used in HADDOCK3, which also supports the ab initio docking modes of HADDOCK.

To keep HADDOCK3 modules organized, we catalogued them into several categories. But, there are no constraints on piping modules of different categories.

The main module categories are “topology”, “sampling”, “refinement”, “scoring”, and “analysis”. There is no limit to how many modules can belong to a category. Modules are added as developed, and new categories will be created if/when needed. You can access the HADDOCK3 documentation page for the list of all categories and modules. Below is a summary of the available modules:

  • Topology modules
    • topoaa: generates the all-atom topologies for the CNS engine.
  • Sampling modules
    • rigidbody: Rigid body energy minimization with CNS (it0 in haddock2.x).
    • lightdock: Third-party glow-worm swam optimization docking software.
  • Model refinement modules
    • flexref: Semi-flexible refinement using a simulated annealing protocol through molecular dynamics simulations in torsion angle space (it1 in haddock2.x).
    • emref: Refinement by energy minimisation (itw EM only in haddock2.4).
    • mdref: Refinement by a short molecular dynamics simulation in explicit solvent (itw in haddock2.X).
  • Scoring modules
    • emscoring: scoring of a complex performing a short EM (builds the topology and all missing atoms).
    • mdscoring: scoring of a complex performing a short MD in explicit solvent + EM (builds the topology and all missing atoms).
  • Analysis modules
    • caprieval: Calculates CAPRI metrics (i-RMSD, l-RMSD, Fnat, DockQ) with respect to the top scoring model or reference structure if provided.
    • clustfcc: Clusters models based on the fraction of common contacts (FCC)
    • rmsdmatrix: Calculates the pairwise RMSD matrix between all the models generated in the previous step.
    • ilrmsdmatrix: Calculates the pairwise interface-ligand RMSD matrix between all the models generated in the previous step.
    • clustrmsd: Clusters models based on pairwise RMSD matrix calculated with the rmsdmatrix/ilrmsdmatrix module.
    • seletop: Selects the top N models from the previous step.
    • seletopclusts: Selects top N clusters from the previous step.
    • contactmap: Generates a contact map for the models generated in the previous step.
    • alascan: Performs an alanine scanning on the models generated in the previous step.

The HADDOCK3 workflows are defined in simple configuration text files, similar to the TOML format but with extra features. Contrarily to HADDOCK2.X which follows a rigid (yet highly parameterisable) procedure, in HADDOCK3, you can create your own simulation workflows by combining a multitude of independent modules that perform specialized tasks.



Software requirements

Installing CNS

The other required piece of software to run HADDOCK is its computational engine, CNS (Crystallography and NMR System – https://cns-online.org). CNS is freely available for non-profit organizations. In order to get access to all features of HADDOCK you will need to compile CNS using the additional files provided in the HADDOCK distribution in the varia/cns1.3 directory. Compilation of CNS might be non-trivial. Some guidance on installing CNS is provided in the online HADDOCK3 documentation page here.

Installing HADDOCK3

In this tutorial we will make use of the HADDOCK3 version. In case HADDOCK3 is not pre-installed in your system you will have to install it.

To obtain HADDOCK3 navigate to its repository, fill the registration form, and then follow the installation instructions.

Auxiliary software

FreeSASA: FreeSASA will be used to identify surface-accessible residues (pre-calculated data are provided).

PDB-tools: A useful collection of Python scripts for the manipulation (renumbering, changing chain and segIDs…) of PDB files is freely available from our GitHub repository. pdb-tools is automatically installed with HADDOCK3. If you have activated the HADDOCK3 Python environment you have access to the pdb-tools package.

PyMol: We will make use of PyMol for visualization. If not already installed on your system, download and install PyMol.



Preparing PDB files for docking

In this section we will prepare the PDB files of the antibody and antigen for docking. Crystal structures of both the antibody and the antigen in their free forms are available from the PDBe database. In the case of the antibody which consists of two chains (L+H) we will have to prepare it for use in HADDOCK such as it can be treated as a single chain with non-overlapping residue numbering. For this we will be making use of pdb-tools from the command line.

Note that pdb-tools is also available as a web service.

Note: Before starting to work on the tutorial, make sure to activate haddock3 (follow the workshop-specific instructions above), or, e.g. if installed using conda

conda activate haddock3


Preparing the antibody structure

Using PDB-tools we will download the structure from the PDB database (the PDB ID is 4G6K) and then process it to have a unique chain ID (A) and non-overlapping residue numbering by shifting the residue numbering of the second chain.

This can be done from the command line with:

pdb_fetch 4G6K | pdb_tidy -strict | pdb_selchain -H | pdb_delhetatm | pdb_fixinsert | pdb_keepcoord | pdb_tidy -strict > 4G6K_H.pdb pdb_fetch 4G6K | pdb_tidy -strict | pdb_selchain -L | pdb_delhetatm | pdb_fixinsert | pdb_shiftres -1000 | pdb_keepcoord | pdb_tidy -strict > 4G6K_L.pdb pdb_merge 4G6K_H.pdb 4G6K_L.pdb |pdb_chain -A |pdb_chainxseg | pdb_tidy -strict > 4G6K_clean.pdb

The first command fetches the PDB ID, select the heavy chain (H) and removes water and heteroatoms (in this case no co-factor is present that should be kept). An important part for antibodies is the pdb_fixinsert command that fixes the residue numbering of the HV loops: Antibodies often follow the Chothia numbering scheme and insertions created by this numbering scheme (e.g. 82A,82B,82C) cannot be processed by HADDOCK directly. As such renumbering is necessary before starting the docking.

The second command does the same for the light chain (L) with an additional step of shifting the residue numbering by 1000 (using pdb_shiftres) to avoid overlap in the numbering of the two chains.

The third and last command merges the two processed chains and assign them unique chain- and segIDs, resulting in the HADDOCK-ready 4G6K_clean.pdb file.

Note that the corresponding files can be found in the pdbs directory of the archive you downloaded.


Preparing the antigen structure

Using PDB-tools we will download the structure from the PDB database (the PDB ID is 4I1B), remove the hetero atoms and then process it to assign it chainID B.

pdb_fetch 4I1B | pdb_tidy -strict | pdb_delhetatm | pdb_keepcoord | pdb_chain -B | pdb_chainxseg | pdb_tidy -strict > 4I1B_clean.pdb



Defining restraints for docking

Before setting up the docking we need first to generate distance restraint files in a format suitable for HADDOCK. HADDOCK uses CNS as computational engine. A description of the format for the various restraint types supported by HADDOCK can be found in our Nature Protocol paper, Box 4.

Distance restraints are defined as:

assign (selection1) (selection2) distance, lower-bound correction, upper-bound correction

The lower limit for the distance is calculated as: distance minus lower-bound correction and the upper limit as: distance plus upper-bound correction. The syntax for the selections can combine information about chainID - segid keyword -, residue number - resid keyword -, atom name - name keyword. Other keywords can be used in various combinations of OR and AND statements. Please refer for that to the online CNS manual.

We will shortly explain in this section how to generate both ambiguous interaction restraints (AIRs) and specific distance restraints for use in HADDOCK illustrating two scenarios:

  • HV loops on the antibody, full surface on the antigen
  • HV loops on the antibody, NMR interface mapping on the antigen

Information about various types of distance restraints in HADDOCK can also be found in our online manual pages.


Identifying the paratope of the antibody

Nowadays there are several computational tools that can identify the paratope (the residues of the hypervariable loops involved in binding) from the provided antibody sequence. In this tutorial we are providing you the corresponding list of residue obtained using ProABC-2. ProABC-2 uses a convolutional neural network to identify not only residues which are located in the paratope region but also the nature of interactions they are most likely involved in (hydrophobic or hydrophilic). The work is described in Ambrosetti, et al Bioinformatics, 2020.

The corresponding paratope residues (those with either an overall probability >= 0.4 or a probability for hydrophobic or hydrophilic > 0.3) are:

31,32,33,34,35,52,54,55,56,100,101,102,103,104,105,106,1031,1032,1049,1050,1053,1091,1092,1093,1094,1096

The numbering corresponds to the numbering of the 4G6K_clean.pdb PDB file.

Let us visualize those onto the 3D structure. For this start PyMOL and load 4G6K_clean.pdb

File menu -> Open -> select 4G6K_clean.pdb

or from the command line:

pymol 4G6K_clean.pdb

We will now highlight the predicted paratope. In PyMOL type the following commands:

color white, all select paratope, (resi 31+32+33+34+35+52+54+55+56+100+101+102+103+104+105+106+1031+1032+1049+1050+1053+1091+1092+1093+1094+1096)
color red, paratope

Can you identify the H3 loop? H stands for heavy chain (the first domain in our case with lower residue numbering). H3 is typically the longest loop.

Let us now switch to a surface representation to inspect the predicted binding site.

show surface

Inspect the surface.

Do the identified residues form a well defined patch on the surface?

See surface view of the paratope expand_more


Antigen scenario 1: no information

In this scenario, we will target the entire surface of the antigen by selecting the solvent accessible residues. For this can use freesasa to calculate the solvent accessible surface area (SASA) for the different residues. If freesasa is available from the command line you can run it to generate the solvent accessibility data with:

freesasa 4I1B_clean.pdb --format=rsa >4I1B_clean.rsa

REM  FreeSASA 2.0.3
REM  Absolute and relative SASAs for 4I1B_clean.pdb
REM  Atomic radii and reference values for relative SASA: ProtOr
REM  Chains: A
REM  Algorithm: Lee & Richards
REM  Probe-radius: 1.40
REM  Slices: 20
REM RES _ NUM      All-atoms   Total-Side   Main-Chain    Non-polar    All polar
REM                ABS   REL    ABS   REL    ABS   REL    ABS   REL    ABS   REL
RES VAL A   3    84.83  55.8  13.08  11.8  71.76 172.9  30.45  26.5  54.38 147.5
RES ARG A   4   200.36  84.1 192.85  98.3   7.51  17.9  71.92  98.3 128.44  77.8
RES SER A   5    48.69  41.1  25.55  34.1  23.14  53.3  22.44  47.8  26.25  36.8
RES LEU A   6    71.91  40.0  70.87  50.7   1.04   2.6  71.91  50.5   0.00   0.0
RES ASN A   7    31.01  21.4  25.87  25.0   5.14  12.4   0.00   0.0  31.01  30.0
...

The following command will return all residues with a relative SASA for either the backbone or the side-chain > 15% (we use 15% to limit the number of surface residues selected as their number does increase the computational requirements)

awk '{if (NF==13 && ($7>15 || $9>15)) printf "\%d ",$3; if (NF==14 && ($8>15 || $10>15)) print $0}' 4I1B_clean.rsa

The resulting list of residues can be found in the restraints/antigen-surface.act-pass file. Note in this file the empty first line. The file consists of two lines, with the first one defining the active residues and the second line the passive ones, in this case the solvent accessible residues. We will use later this file to generate the ambiguous distance restraints for HADDOCK.

If you want to generate the same file, first create an empty line and then use the awk command, piping the results to an output file, e.g.:

echo " " > antigen-surface.pass
awk '{if (NF==13 && ($7>15 || $9>15)) printf "\%d ",$3; if (NF==14 && ($8>15 || $10>15)) printf "\%d ",$4}' 4I1B_clean.rsa >> antigen-surface.pass

The same can be achieved using the haddock3-restraints command line tool:

haddock3-restraints calc_accessibility –cutoff 0.15 pdbs/4I1B_clean.pdb

The simple output directly reports the list of residues:

14/03/2023 13:15:20 L157 INFO - Calculate accessibility...
14/03/2023 13:15:20 L228 INFO - Chain: B - 151 residues
14/03/2023 13:15:20 L234 INFO - Applying cutoff to side_chain_rel - 0.15
14/03/2023 13:15:20 L244 INFO - Chain B - 3,4,5,6,7,11,13,14,15,20,21,22,23,24,25,27,29,30,32,33,34,35,36,37,38,41,43,46,48,49,50,51,52,53,54,55,56,63,64,65,66,72,73,74,75,76,77,79,81,83,84,86,87,88,89,91,92,93,94,96,97,98,105,106,107,108,109,115,116,117,118,119,120,125,126,127,128,129,130,131,133,135,137,138,139,140,141,142,145,147,149,150,151,152,153

We can visualize the selected surface residues of Interleukin-1β.

For this start PyMOL and from the PyMOL File menu open the PDB file of the antigen.

color white, all show surface select surface15, (resi 3+4+5+6+13+14+15+20+21+22+23+24+25+30+32+33+34+35+37+38+48+49+50+51+52+53+54+55+61+63+64+65+66+73+74+75+76+77+80+84+86+87+88+89+90+91+93+94+96+97+105+106+107+108+109+118+119+126+127+128+129+130+135+136+137+138+139+140+141+142+147+148+150+151+152+153) color green, surface40

color white, all show surface select surface40, (resi 3+4+5+6+13+14+15+20+21+22+23+24+25+30+32+33+34+35+37+38+48+49+50+51+52+53+54+55+61+63+64+65+66+73+74+75+76+77+80+84+86+87+88+89+90+91+93+94+96+97+105+106+107+108+109+118+119+126+127+128+129+130+135+136+137+138+139+140+141+142+147+148+150+151+152+153) color green, surface40


Antigen scenario 2: NMR-mapped epitope information

The article describing the crystal structure of the antibody-antigen complex we are modelling also reports on experimental NMR chemical shift titration experiments to map the binding site of the antibody (gevokizumab) on Interleukin-1β. The residues affected by binding are listed in Table 5 of Blech et al. JMB 2013:

The list of binding site (epitope) residues identified by NMR is:

72,73,74,75,81,83,84,89,90,92,94,96,97,98,115,116,117

We will now visualize the epitope on Interleukin-1β. For this start PyMOL and from the PyMOL File menu open the provided PDB file of the antigen.

File menu -> Open -> select 4I1B_clean.pdb

color white, all show surface select epitope, (resi 72+73+74+75+81+83+84+89+90+92+94+96+97+98+115+116+117) color red, epitope

Inspect the surface.

Do the identified residues form a well defined patch on the surface?

The answer to that question should be yes, but we can see some residues not colored that might also be involved in the binding - there are some white spots around/in the red surface.

See surface view of the epitope identified by NMR expand_more


In HADDOCK we are dealing with potentially incomplete binding sites by defining surface neighbors as passive residues. These are added to the definition of the interface but will not lead to any energetic penalty if they are not part of the binding site in the final models, while the residues defined as active (typically the identified or predicted binding site residues) will. When using the HADDOCK server, passive residues will be automatically defined. Here since we are using a local version, we need to define those manually.

This can easily be done using the following HADDOCK3 command line interface:

haddock3-restraints passive_from_active 4I1B_clean.pdb 72,73,74,75,81,83,84,89,90,92,94,96,97,98,115,116,117

The NMR-identified residues and their surface neighbors generated with the above command can be used to define ambiguous interactions restraints, either using the NMR identified residues as active in HADDOCK, or combining those with the surface neighbors and use this combination as passive only. The corresponding files can be found in the restraints/antigen-NMR-epitope.act-pass and restraints/antigen-NMR-epitope.passfiles. Note in the second file the empty first line. The file consists of two lines, with the first one defining the active residues and the second line the passive ones. We will use later these files to generate the ambiguous distance restraints for HADDOCK.

In general it is better to be too generous rather than too strict in the definition of passive residues.

An important aspect is to filter both the active (the residues identified from your mapping experiment) and passive residues by their solvent accessibility. Our web service uses a default relative accessibility of 15% as cutoff. This is not a hard limit. You might consider including even more buried residues if some important chemical group seems solvent accessible from a visual inspection.


Defining ambiguous restraints for scenario 1

Once you have defined your active and passive residues for both molecules, you can proceed with the generation of the ambiguous interaction restraints (AIR) file for HADDOCK. For this you can either make use of our online GenTBL web service, entering the list of active and passive residues for each molecule, and saving the resulting restraint list to a text file, or use the relevant haddock-tools script.

To use our haddock3-restraints active_passive_to_ambig script you need to create for each molecule a file containing two lines:

  • The first line corresponds to the list of active residues (numbers separated by spaces)
  • The second line corresponds to the list of passive residues.

For scenario 1 this would be:

  • For the antibody (the file called antibody-paratope.act-pass from the restraints directory):
31 32 33 34 35 52 54 55 56 100 101 102 103 104 105 106 1031 1032 1049 1050 1053 1091 1092 1093 1094 1096
  • and for the antigen (the file called antigen-surface.pass from the restraints directory):
3 4 5 6 13 14 15 20 21 22 23 24 25 30 32 33 34 35 37 38 48 49 50 51 52 53 54 55 61 63 64 65 66 73 74 75 76 77 80 84 86 87 88 89 90 91 93 94 96 97 105 106 107 108 109 118 119 126 127 128 129 130 135 136 137 138 139 140 141 142 147 148 150 151 152 153

Using those two files, we can generate the CNS-formatted AIR restraint files with the following command:

haddock3-restraints active_passive_to_ambig ./restraints/antibody-paratope.act-pass ./restraints/antigen-surface.pass > ambig-paratope-surface.tbl

This generates a file called ambig-paratope-surface.tbl that contains the AIR restraints. The default distance range for those is between 0 and 2Ă…, which might seem short but makes senses because of the 1/r^6 summation in the AIR energy function that makes the effective distance be significantly shorter than the shortest distance entering the sum.

The effective distance is calculated as the SUM over all pairwise atom-atom distance combinations between an active residue and all the active+passive on the other molecule: SUM[1/r^6]^(-1/6).

If you modify manually this file, it is possible to quickly check if the format is valid. To do so, you can use the haddock3-restraints validate_tbl utility. To use it, type:

haddock3-restraints validate_tbl --silent ambig-paratope-surface.tbl

No output means that your TBL file is valid.


Defining ambiguous restraints for scenario 2a

In this scenario the NMR epitope combined with the surface neighbors are used as passive residues in HADDOCK.

The creation of the AIR tbl file for scenario 2a is similar to scenario 1, but instead using the antigen-NMR-epitope.pass file for the antigen:

haddock3-restraints active_passive_to_ambig ./restraints/antibody-paratope.act-pass ./restraints/antigen-NMR-epitope.pass > ambig-paratope-NMR-epitope-pass.tbl


Defining ambiguous restraints for scenario 2b

In this scenario the NMR epitope is defined as active (meaning ambiguous distance restraints will be defined from the NMR epitope residues) and the surface neighbors are used as passive residues in HADDOCK.

The creation of the AIR tbl file for scenario 2b is similar to scenario 1, but instead using the antigen-NMR-epitope.act-pass file for the antigen:

haddock3-restraints active_passive_to_ambig ./restraints/antibody-paratope.act-pass ./restraints/antigen-NMR-epitope.act-pass > ambig-paratope-NMR-epitope.tbl


Additional restraints for multi-chain proteins

As an antibody consists of two separate chains, it is important to define a few distance restraints to keep them together during the high temperature flexible refinement stage of HADDOCK. This can easily be done using another haddock3-restraints subcommand.

haddock3-restraints restrain_bodies 4G6K_clean.pdb > antibody-unambig.tbl

The result file contains two CA-CA distance restraints with the exact distance measured between the picked CA atoms:

  assign (segid A and resi 220 and name CA) (segid A and resi 1018 and name CA) 47.578 0.0 0.0
  assign (segid A and resi 193 and name CA) (segid A and resi 1014 and name CA) 33.405 0.0 0.0

This file is also provided in the restraints directory of the archive you downloaded.



Setting up the docking with HADDOCK3

Now that we have all required files at hand (PBD and restraints files) it is time to setup our docking protocol. For this we need to create a HADDOCK3 configuration file that will define the docking workflow. In contrast to HADDOCK2.X, we have much more flexibility in doing this. We will illustrate this flexibility by introducing a clustering step after the initial rigid-body docking stage, select up to 10 models per cluster and refine all of those.

HADDOCK3 also provides an analysis module (caprieval) that allows to compare models to either the best scoring model (if no reference is given) or a reference structure, which in our case we have at hand. This will directly allow us to assess the performance of the protocol for the following three scenarios:

  1. Scenario 1: Docking using the paratope information only and the surface of the antigen
  2. Scenario 2a: Docking using the paratope and the NMR-identified epitope as passive
  3. Scenario 2b: Docking using the paratope and the NMR-identified epitope as active

The basic workflow for all three scenarios will consists of the following modules, with some differences in the restraints used and some parameter settings (see below):

  1. topoaa: Generates the topologies for the CNS engine and build missing atoms
  2. rigidbody: Rigid body energy minimisation (it0 in haddock2.x)
  3. clustfcc: Clustering of models based on the fraction of common contacts (FCC)
  4. seletopclusts: Selection of the top10 models of all clusters
  5. flexref: Semi-flexible refinement of the interface (it1 in haddock2.4)
  6. emref: Final refinement by energy minimisation (itw EM only in haddock2.4)
  7. clustfcc: Clustering of models based on the fraction of common contacts (FCC)
  8. caprieval: Calculates CAPRI metrics (i-RMSD, l-RMSD, Fnat, DockQ) with respect to the top scoring model or reference structure if provided

The input PDB files are the same for all three scenarios. The differences are in the ambiguous interaction restraint files used and the sampling at the rigid body stage in the case of scenario1.

Note that for the** ISGC2023 HADDOCK workshop **, we will only run scenario2a with a reduced sampling for the rigid body module of 200 models to limit to the computing time and get results within a reasonable time using only 10 processors. The corresponding haddock3 scripts for this is provided as scenario2a-NMR-epitope-pass-short.cfg. Other example scripts can be found in the haddock3 directory.


HADDOCK3 execution modes

HADDOCK3 currently supports three difference execution modes that are defined in the first section of the configuration file of a run.

1. local mode

In this mode HADDOCK3 will run on the current system, using the defined number of cores (ncores) in the config file to a maximum of the total number of available cores on the system minus one. An example of the relevant parameters to be defined in the first section of the config file is:

# compute mode
mode = "local"
#  1 nodes x 96 ncores
ncores = 96

In this mode HADDOCK3 can be started from the command line with as argument the configuration file of the defined workflow.

haddock3 <my-workflow-configuration-file>

Alternatively redirect the output to a log file and send haddock3 to the background.

Note: This is the execution mode you should use on the NMRBox resources. For the tutorial we limit the number of cores to 10.

haddock3 <my-workflow-configuration-file> > haddock3.log &

Note: This is also the execution mode that should be used for example when submitting the HADDOCK3 job to a node of a cluster, requesting X number of cores.

View an example script for submitting via the slurm batch system expand_more
  #!/bin/bash
  #SBATCH --nodes=1
  #SBATCH --tasks-per-node=96
  #SBATCH -J haddock3
  #SBATCH --partition=medium

  # load haddock3 module
  module load haddock3
  # or activate the haddock3 conda environment
  ##source $HOME/miniconda3/etc/profile.d/conda.sh
  ##conda activate haddock3

  # go to the run directory
  cd $HOME/HADDOCK3-antibody-antigen

  # execute
  haddock3 scenario1-surface-node.cfg
  

View an EU-ASEAN HPC school example script for submitting to the Fugaku batch system expand_more
#!/bin/bash
#PJM -L  "node=1"                            # Assign 1 node
#PJM -L  "elapse=02:00:00"                   # Elapsed time limit 2 hour
#PJM -x PJM_LLIO_GFSCACHE=/vol0003:/vol0006  # volume names that job uses
#PJM -s                                      # Statistical information output

# active the haddock3 conda environment
source /vol0601/share/ra020021/LifeScience/20221208_Bonvin/miniconda3-arm8/etc/profile.d/conda.sh
conda activate haddock3

# go to the tutorial directory in your home directory
# edit if needed to specify the correct location
cd $HOME/HADDOCK3-antibody-antigen

# execute haddock3
haddock3 scenario2a-NMR-epitope-pass-node.cfg


2. batch mode

In this mode HADDOCK3 will typically be started on your local server (e.g. the login node) and will dispatch jobs to the batch system of your cluster. Two batch systems are currently supported: slurm and torque (defined by the batch_type parameter). In the configuration file you will have to define the queue name and the maximum number of concurrent jobs sent to the queue (queue_limit). Since HADDOCK3 single model calculations are quite fast, it is recommended to calculate multiple models within one job submitted to the batch system. The number of model per job is defined by the concat parameter in the configuration file. You want to avoid sending thousands of very short jobs to the batch system if you want to remain friend with your system administrators…

An example of the relevant parameters to be defined in the first section of the config file is:

# compute mode
mode = "batch"
# batch system
batch_type = "slurm"
# queue name
queue = "short"
# number of concurrent jobs to submit to the batch system
queue_limit = 100
# number of models to produce per submitted job
concat = 10

In this mode HADDOCK3 can be started from the command line as for the local mode.

3. MPI mode

HADDOCK3 supports a parallel MPI implementation (functional but still very experimental at this stage). For this to work, the mpi4py library must have been installed at installation time. Refer to the MPI-related instructions. The execution mode should be set to mpi and the total number of cores should match the requested resources when submitting to the batch system.

An example of the relevant parameters to be defined in the first section of the config file is:

# compute mode
mode = "mpi"
#  5 nodes x 50 tasks = ncores = 250
ncores = 250

In this execution mode the HADDOCK3 job should be submitted to the batch system requesting the corresponding number of nodes and cores per node.

View an example script for submitting an MPI HADDOCK3 job the slurm batch system expand_more
  #!/bin/bash
  #SBATCH --nodes=5
  #SBATCH --tasks-per-node=50
  #SBATCH -J haddock3mpi

  # load haddock3 module
  module load haddock3
  # or make sure haddock3 is activated
  ##source $HOME/miniconda3/etc/profile.d/conda.sh
  ##conda activate haddock3

  # go to the run directory
  # edit if needed to specify the correct location
  cd $HOME/HADDOCK3-antibody-antigen

  # execute
  haddock3 scenario2a-NMR-epitope-pass-mpi.cfg
  


Scenario 1: Paratope - antigen surface

Now that we have all data ready, and know about execution modes of HADDOCK3 it is time to setup the docking for the first scenario in which we will use the paratope on the antibody to guide the docking, targeting the entire surface of the antibody. The restraint file to use for this is ambig-paratope-surface.tbl. We will also define the restraints to keep the two antibody chains together using for this the antibody-unambig.tbl restraint file. Further, as we have no information on the antigen side, it is important to increase the sampling in the rigid body sampling stage to 10000. And we will also turn off the default random removal of restraints to keep all the information on the paratope (randremoval = false). The configuration file for this scenario (assuming a local running mode, eventually submitted to the batch system requesting a full node) is:

# ====================================================================
# Antibody-antigen docking example with restraints from the antibody
# paratope to the entire surface of the antigen
# ====================================================================

# directory name of the run
run_dir = "scenario1-surface"

# compute mode
mode = "local"
#  1 nodes x 96 threads
ncores = 96

# Self contained rundir (to avoid problems with long filename paths)
self_contained = true

# molecules to be docked
molecules =  [
    "pdbs/4G6K_clean.pdb",
    "pdbs/4I1B_clean.pdb"
    ]

# ====================================================================
# Parameters for the various stages
# ====================================================================
[topoaa]

[rigidbody]
# CDR to surface ambig restraints
ambig_fname = "restraints/ambig-paratope-surface.tbl"
# Restraints to keep the antibody chains together
unambig_fname = "restraints/antibody-unambig.tbl"
# Turn off random removal of restraints
randremoval = false
# Number of models to generate
sampling = 10000

[clustfcc]
min_population = 4
top_models = 10

[seletopclusts]
## select all the clusters
top_cluster = 500
## select the best 10 models of each cluster
top_models = 10

[caprieval]
# this is only for this tutorial to check the performance at the rigidbody stage
reference_fname = "pdbs/4G6M_matched.pdb"

[flexref]
# Acceptable percentage of model failures
tolerance = 5
# CDR to surface ambig restraints
ambig_fname = "restraints/ambig-paratope-surface.tbl"
# Restraints to keep the antibody chains together
unambig_fname = "restraints/antibody-unambig.tbl"
# Turn off random removal of restraints
randremoval = false

[emref]
# CDR to surface ambig restraints
ambig_fname = "restraints/ambig-paratope-surface.tbl"
# Restraints to keep the antibody chains together
unambig_fname = "restraints/antibody-unambig.tbl"
# Turn off random removal of restraints
randremoval = false

[clustfcc]

[seletopclusts]
top_cluster = 500

[caprieval]
reference_fname = "pdbs/4G6M_matched.pdb"

# ====================================================================

This configuration file is provided in the haddock3 directory of the downloaded data set for this tutorial as scenario1-surface-node.cfg. An MPI version (this is still very much experimental and might not work on all systems) is also available as scenario1-surface-mpi.cfg.

Compared to the workflow described above (Setting up the docking with HADDOCK3), this example has one additional step. Can you identify which one?

If you have everything ready, you can launch haddock3 either from the command line, or, better, submitting it to the batch system requesting in this local run mode a full node (see local execution mode above).

Note that this scenario is computationally more expensive because of the increased sampling. On our own cluster, running in MPI mode with 250 cores on AMD EPYC 7451 processors the run completed in 1h23min. The same run on a single node using all 96 threads took on the same architecture 4 hours and 8 minutes.

On the Fugaku supercomputer used for the EU ASEAN HPC school, running on a single node 48 armv8 A64FX, this run completed in about 23 hours.


Scenario 2a: Paratope - NMR-epitope as passive

In scenario 2a we are setting up the docking in which the paratope on the antibody is used to guide the docking, targeting the NMR-identified epitope (+surface neighbors) defined as passive residues. The restraint file to use for this is ambig-paratope-NMR-epitope-pass.tbl. As for scenario1, we will also define the restraints to keep the two antibody chains together using for this the antibody-unambig.tbl restraint file. In this case since we have information for both interfaces default sampling parameters are sufficient. And we will also turn off the default random removal of restraints to keep all the information on the paratope (randremoval = false). The configuration file for this scenario (assuming a local running mode, eventually submitted to the batch system requesting a full node) is:

# ====================================================================
# Antibody-antigen docking example with restraints from the antibody
# paratope to the NMR-identified epitope on the antigen (as passive)
# ====================================================================

# directory name of the run
run_dir = "scenario2a-NMR-epitope-pass"

# MPI compute mode
mode = "local"
#  1 nodes x 96 threads
ncores = 96

# Self contained rundir (to avoid problems with long filename paths)
self_contained = true

# molecules to be docked
molecules =  [
    "pdbs/4G6K_clean.pdb",
    "pdbs/4I1B_clean.pdb"
    ]

# ====================================================================
# Parameters for each stage are defined below, prefer full paths
# ====================================================================
[topoaa]

[rigidbody]
# CDR to surface ambig restraints
ambig_fname = "restraints/ambig-paratope-NMR-epitope-pass.tbl"
# Restraints to keep the antibody chains together
unambig_fname = "restraints/antibody-unambig.tbl"
# Turn off random removal of restraints
randremoval = false

[clustfcc]
min_population = 4
top_models = 10

[seletopclusts]
## select all the clusters
top_cluster = 500
## select the best 10 models of each cluster
top_models = 10

[caprieval]
# this is only for this tutorial to check the performance at the rigidbody stage
reference_fname = "pdbs/4G6M_matched.pdb"

[flexref]
# Acceptable percentage of model failures
tolerance = 5
# CDR to surface ambig restraints
ambig_fname = "restraints/ambig-paratope-NMR-epitope-pass.tbl"
# Restraints to keep the antibody chains together
unambig_fname = "restraints/antibody-unambig.tbl"
# Turn off random removal of restraints
randremoval = false

[emref]
# CDR to surface ambig restraints
ambig_fname = "restraints/ambig-paratope-NMR-epitope-pass.tbl"
# Restraints to keep the antibody chains together
unambig_fname = "restraints/antibody-unambig.tbl"
# Turn off random removal of restraints
randremoval = false

[clustfcc]

[seletopclusts]
top_cluster = 500

[caprieval]
reference_fname = "pdbs/4G6M_matched.pdb"

# ====================================================================

This configuration is provided in the haddock3 directory of the downloaded data set for this tutorial as scenario2a-NMR-epitope-pass-node.cfg. An MPI version (this is still very much experimental and might not work on all systems) is also available as scenario2a-NMR-epitope-pass-mpi.cfg.

If you have everything ready, you can launch haddock3 either from the command line, or, better, submitting it to the batch system requesting in this local run mode a full node (see local execution mode above).

Note that this scenario is less expensive since we keep the default sampling parameters. On our own cluster, running in MPI mode with 250 cores on AMD EPYC 7451 processors the run completed in about 7 minutes. The same run on a single node using all 96 threads took on the same architecture about 21 minutes. In batch mode, using 100 queue slots and 10 models per job, the same run completed in about 45 minutes.

On the Fugaku supercomputer used for the EU ASEAN HPC school, running on a single node (48 armv8 A64FX processors), this run completed in about 1 hour and 15 minutes. Limiting the sampling to 240 rigid body models (recommended for the EU ASEAN HPC school) shorten the execution time to 37 minutes.


Scenario 2b: Paratope - NMR-epitope as active

Scenario 2b is rather similar to scenario 2a with the difference that the NMR-identified epitope is treated as active, meaning restraints will be defined from it to “force” it to be at the interface. And since there might be more false positive data in the identified interfaces, we will leave the random removal of restraints on. The restraint file to use for this is ambig-paratope-NMR-epitope-act.tbl. As for scenario1, we will also define the restraints to keep the two antibody chains together using for this the antibody-unambig.tbl restraint file. In this case since we have information for both interfaces default sampling parameters are sufficient. The configuration file for this scenario (assuming a local running mode, eventually submitted to the batch system requesting a full node) is:

# ====================================================================
# Antibody-antigen docking example with restraints from the antibody
# paratope to the NMR-identified epitope on the antigen (as active)
# and keeping the random removal of restraints
# ====================================================================

# directory name of the run
run_dir = "scenario2b-NMR-epitope-act"

# compute mode
mode = "local"
#  1 nodes x 96 cores
ncores = 96

# Self contained rundir (to avoid problems with long filename paths)
self_contained = true

# molecules to be docked
molecules =  [
    "pdbs/4G6K_clean.pdb",
    "pdbs/4I1B_clean.pdb"
    ]

# ====================================================================
# Parameters for each stage are defined below, prefer full paths
# ====================================================================
[topoaa]

[rigidbody]
# CDR to surface ambig restraints
ambig_fname = "restraints/ambig-paratope-NMR-epitope-act.tbl"
# Restraints to keep the antibody chains together
unambig_fname = "restraints/antibody-unambig.tbl"

[clustfcc]
min_population = 4
top_models = 10

[seletopclusts]
## select all the clusters
top_cluster = 500
## select the best 10 models of each cluster
top_models = 10

[caprieval]
# this is only for this tutorial to check the performance at the rigidbody stage
reference_fname = "pdbs/4G6M_matched.pdb"

[flexref]
# Acceptable percentage of model failures
tolerance = 5
# CDR to surface ambig restraints
ambig_fname = "restraints/ambig-paratope-NMR-epitope-act.tbl"
# Restraints to keep the antibody chains together
unambig_fname = "restraints/antibody-unambig.tbl"

[emref]
# CDR to surface ambig restraints
ambig_fname = "restraints/ambig-paratope-NMR-epitope-act.tbl"
# Restraints to keep the antibody chains together
unambig_fname = "restraints/antibody-unambig.tbl"

[clustfcc]

[seletopclusts]
top_cluster = 500

[caprieval]
reference_fname = "pdbs/4G6M_matched.pdb"

# ====================================================================

This configuration file is provided in the haddock3 directory of the downloaded data set for this tutorial as scenario2b-NMR-epitope-act-node.cfg. An MPI version is also available as scenario2b-NMR-epitope-act-mpi.cfg.

If you have everything ready, you can launch haddock3 either from the command line, or, better, submitting it to the batch system requesting in this local run mode a full node (see local execution mode above).

Note The running time for this scenario is similar to that of scenario 2a (see above).



Analysis of docking results

Structure of the run directory

Once your run has completed inspect the content of the resulting directory. You will find the various steps (modules) of the defined workflow numbered sequentially, e.g.:

> ls scenario2a-NMR-epitope-pass/
    0_topoaa/
    1_rigidbody/
    2_clustfcc/
    3_seletopclusts/
    4_caprieval/
    5_flexref/
    6_emref/
    7_clustfcc/
    8_seletopclusts/
    9_caprieval/
    analysis/
    data/
    log

There is in addition the log file (text file) and two additional directories:

  • the data directory containing the input data (PDB and restraint files) for the various modules
  • the analysis directory containing various plots to visualise the results for each caprieval step

You can find information about the duration of the run at the bottom of the log file. Each sampling/refinement/selection module will contain PBD files.

For example, the X_seletopclusts directory contains the selected models from each cluster. The clusters in that directory are numbered based on their rank, i.e. cluster_1 refers to the top-ranked cluster. Information about the origin of these files can be found in that directory in the seletopclusts.txt file.

The simplest way to extract ranking information and the corresponding HADDOCK scores is to look at the X_caprieval directories (which is why it is a good idea to have it as the final module, and possibly as intermediate steps). This directory will always contain a capri_ss.tsv file, which contains the model names, rankings and statistics (score, iRMSD, Fnat, lRMSD, ilRMSD and dockq score). E.g.:

mmodel	md5	caprieval_rank	score	irmsd	fnat	lrmsd	ilrmsd	dockq	cluster-id	cluster-ranking	model-cluster-ranking	air	angles	bonds	bsa	cdih	coup	dani	desolv	dihe	elec	improper	rdcs	rg	total	vdw	vean	xpcs
../6_emref/emref_11.pdb	-	1	-151.136	1.261	0.741	2.673	2.192	0.746	2	1	1	79.990	0.000	0.000	2072.710	0.000	0.000	0.000	9.960	0.000	-598.859	0.000	0.000	0.000	-568.192	-49.323	0.000	0.000
../6_emref/emref_15.pdb	-	2	-137.252	1.237	0.845	2.713	2.253	0.783	2	1	2	83.274	0.000	0.000	2058.800	0.000	0.000	0.000	12.576	0.000	-584.402	0.000	0.000	0.000	-542.402	-41.275	0.000	0.000
../6_emref/emref_19.pdb	-	3	-136.527	1.550	0.621	4.283	3.353	0.634	2	1	3	200.318	0.000	0.000	1879.180	0.000	0.000	0.000	11.023	0.000	-704.878	0.000	0.000	0.000	-531.166	-26.606	0.000	0.000
../6_emref/emref_14.pdb	-	4	-131.142	1.658	0.776	3.271	3.005	0.699	2	1	4	163.724	0.000	0.000	2000.350	0.000	0.000	0.000	0.028	0.000	-449.205	0.000	0.000	0.000	-343.183	-57.702	0.000	0.000
../6_emref/emref_1.pdb	-	5	-128.501	14.936	0.069	22.861	21.984	0.067	3	2	1	159.850	0.000	0.000	1975.260	0.000	0.000	0.000	7.691	0.000	-451.593	0.000	0.000	0.000	-353.602	-61.859	0.000	0.000
....

If clustering was performed prior to calling the caprieval module the capri_ss.tsv will also contain information about to which cluster the model belongs to and its ranking within the cluster as shown above.

The relevant statistics are:

  • score: the HADDOCK score (arbitrary units)
  • irmsd: the interface RMSD, calculated over the interfaces the molecules
  • fnat: the fraction of native contacts
  • lrmsd: the ligand RMSD, calculated on the ligand after fitting on the receptor (1st component)
  • ilrmsd: the interface-ligand RMSD, calculated over the interface of the ligand after fitting on the interface of the receptor (more relevant for small ligands for example)
  • dockq: the DockQ score, which is a combination of irmsd, lrmsd and fnat and provides a continuous scale between 1 (equal to reference) and 0

The iRMSD, lRMSD and Fnat metrics are the ones used in the blind protein-protein prediction experiment CAPRI (Critical PRediction of Interactions).

In CAPRI the quality of a model is defined as (for protein-protein complexes):

  • acceptable model: i-RMSD < 4Ă… or l-RMSD<10Ă… and Fnat > 0.1
  • medium quality model: i-RMSD < 2Ă… or l-RMSD<5Ă… and Fnat > 0.3
  • high quality model: i-RMSD < 1Ă… or l-RMSD<1Ă… and Fnat > 0.5

What is based on this CAPRI criterion the quality of the best model listed above (emref_19.pdb)?

In case the caprieval module is called after a clustering step an additional file will be present in the directory: capri_clt.tsv. This file contains the cluster ranking and score statistics, averaged over the minimum number of models defined for clustering (4 by default), with their corresponding standard deviations. E.g.:

cluster_rank	cluster_id	n	under_eval	score	score_std	irmsd	irmsd_std	fnat	fnat_std	lrmsd	lrmsd_std	dockq	dockq_std	air	air_std	bsa	bsa_std	desolv	desolv_std	elec	elec_std	total	total_std	vdw	vdw_std	caprieval_rank
1	2	10	-	-139.014	7.386	1.426	0.182	0.746	0.081	3.235	0.650	0.715	0.056	131.826	51.848	2002.760	76.340	8.397	4.920	-584.336	90.832	-496.236	89.379	-43.727	11.464	1
2	3	10	-	-120.115	6.139	14.964	0.018	0.069	0.000	23.390	0.342	0.065	0.001	189.120	18.758	1998.883	56.075	4.601	5.111	-426.788	71.303	-295.939	64.795	-58.270	8.018	2
3	1	19	-	-86.814	2.027	8.747	0.451	0.112	0.019	16.725	0.548	0.115	0.010	203.898	11.457	1554.495	32.501	7.527	1.994	-355.098	23.298	-194.910	27.573	-43.710	4.911	3
...

In this file you find the cluster rank, the cluster ID (which is related to the size of the cluster, 1 being always the largest cluster), the number of models (n) in the cluster and the corresponding statistics (averages + standard deviations). The corresponding cluster PDB files will be found in the processing X_seletopclusts directory.


Analysis scenario 1: Paratope - antigen surface

Let us now analyze the docking results for this scenario. Use for that either your own run or a pre-calculated run provided in the runs directory (note that to save space only partial data have been kept in this pre-calculated runs, but all relevant information for this tutorial is available).

First of all let us check the final cluster statistics.

Inspect the capri_clt.tsv file

View the pre-calculated 9_caprieval/capri_clt.tsv file expand_more
cluster_rank	cluster_id	n	under_eval	score	score_std	irmsd	irmsd_std	fnat	fnat_std	lrmsd	lrmsd_std	dockq	dockq_std	air	air_std	bsa	bsa_std	desolv	desolv_std	elec	elec_std	total	total_std	vdw	vdw_std	caprieval_rank
1	12	20	-	-148.831	5.410	1.678	0.214	0.733	0.106	3.865	0.862	0.669	0.076	185.424	46.938	2111.405	29.031	7.232	1.046	-570.066	22.622	-445.234	30.130	-60.592	5.236	1
2	18	18	-	-123.766	3.115	13.094	0.125	0.000	0.000	21.834	0.146	0.048	0.001	183.704	11.225	2181.110	90.094	-10.254	2.067	-332.751	46.979	-214.379	31.846	-65.332	7.781	2
3	88	10	-	-123.360	3.041	9.176	0.141	0.017	0.000	21.413	0.684	0.060	0.003	121.738	16.249	1813.925	34.884	-5.384	0.512	-436.619	11.830	-357.708	16.713	-42.827	3.868	3
4	13	20	-	-118.282	5.208	10.944	0.299	0.120	0.021	21.415	0.619	0.092	0.006	152.420	10.986	1808.007	32.866	6.465	1.325	-496.468	28.628	-384.743	24.947	-40.696	2.465	4
5	89	10	-	-116.454	3.801	14.020	0.134	0.017	0.000	24.744	0.187	0.045	0.001	195.446	27.781	1889.682	79.773	-4.616	1.591	-417.563	20.307	-269.986	30.222	-47.870	1.270	5
6	61	10	-	-115.229	3.326	5.378	0.020	0.069	0.012	16.802	0.629	0.115	0.005	88.131	9.931	1852.945	23.752	6.616	0.785	-369.303	8.252	-337.969	11.465	-56.798	1.243	6
7	3	27	-	-114.186	5.971	13.496	0.080	0.000	0.000	20.665	0.102	0.052	0.001	165.852	1.993	1707.362	39.298	-3.782	2.991	-376.041	22.069	-261.970	27.164	-51.781	5.373	7
8	72	10	-	-112.872	6.827	13.981	0.020	0.000	0.000	21.801	0.126	0.048	0.000	132.974	16.434	1966.793	52.013	2.544	3.066	-294.085	43.518	-231.007	42.693	-69.896	9.485	8
9	1	36	-	-109.409	4.762	14.617	0.071	0.000	0.000	23.183	0.063	0.043	0.000	197.155	20.227	1744.597	41.866	2.528	2.065	-328.410	33.521	-197.225	28.906	-65.970	1.565	9
10	17	18	-	-108.195	7.362	11.031	0.082	0.000	0.000	20.012	0.260	0.057	0.001	164.234	10.186	1831.495	37.648	1.541	1.670	-396.469	47.982	-279.100	40.077	-46.865	5.102	10
11	96	10	-	-107.334	2.166	10.667	0.151	0.000	0.000	21.692	0.437	0.051	0.002	142.746	7.402	1610.415	71.508	-1.450	3.091	-388.339	21.616	-288.084	14.372	-42.491	6.894	11
12	14	20	-	-107.155	1.167	13.907	0.198	0.000	0.000	23.257	0.230	0.043	0.001	177.685	34.304	1817.573	49.504	-3.932	4.818	-359.962	72.737	-231.276	34.880	-48.999	7.524	12
13	58	10	-	-105.459	2.853	9.418	0.041	0.017	0.000	14.704	0.253	0.098	0.002	142.162	20.088	1801.787	41.822	7.304	1.091	-390.603	6.402	-297.299	14.909	-48.858	1.289	13
14	7	22	-	-104.950	8.949	12.591	0.206	0.000	0.000	21.517	0.421	0.050	0.002	137.010	17.810	1981.173	62.496	3.391	2.312	-294.790	53.286	-220.864	60.327	-63.084	12.713	14
15	110	8	-	-104.523	5.407	15.786	0.141	0.000	0.000	24.742	0.292	0.038	0.001	188.247	28.369	1656.015	29.305	-7.098	2.026	-309.368	15.169	-175.498	17.510	-54.376	4.423	15
16	90	10	-	-102.191	10.542	14.905	0.036	0.060	0.009	23.103	0.131	0.064	0.003	216.193	11.357	1942.820	85.100	5.473	2.317	-341.726	40.261	-186.471	38.069	-60.938	6.555	16
17	104	9	-	-102.002	3.200	14.681	0.078	0.095	0.009	23.567	0.190	0.074	0.003	282.735	23.431	1944.375	30.920	5.480	0.963	-406.682	30.081	-178.366	9.480	-54.419	6.790	17
18	100	10	-	-101.698	3.868	14.309	0.064	0.000	0.000	23.266	0.038	0.043	0.000	199.056	7.430	1988.773	23.017	-8.379	2.438	-240.464	33.134	-106.540	25.499	-65.132	4.179	18
19	98	10	-	-100.603	4.480	12.350	0.118	0.000	0.000	21.122	0.363	0.051	0.001	252.315	14.795	1677.152	43.166	-3.298	0.773	-394.031	29.076	-185.446	16.087	-43.730	1.316	19
20	102	10	-	-100.156	1.566	13.879	0.194	0.000	0.000	22.984	0.407	0.044	0.001	251.103	18.039	1770.800	64.193	-11.348	2.940	-282.111	7.081	-88.504	22.525	-57.496	2.031	20
21	16	19	-	-100.048	2.675	12.712	0.077	0.000	0.000	21.116	0.748	0.051	0.003	141.121	20.656	1614.205	84.277	-7.610	2.379	-245.708	28.106	-161.995	21.053	-57.408	1.913	21
22	95	10	-	-97.056	5.290	12.727	0.079	0.000	0.000	20.681	0.123	0.053	0.000	174.836	11.509	1808.197	27.762	7.899	2.831	-370.697	37.713	-244.160	41.611	-48.299	8.029	22
23	40	10	-	-96.143	7.294	3.996	0.063	0.151	0.023	7.960	0.413	0.269	0.007	268.064	6.044	1733.595	64.045	5.918	1.741	-440.012	18.438	-212.812	23.620	-40.865	2.978	23
24	87	10	-	-95.919	10.319	10.335	0.290	0.073	0.026	18.886	0.434	0.087	0.011	214.010	12.675	1786.825	65.807	-0.359	4.436	-345.955	25.147	-179.715	31.282	-47.770	4.496	24
25	29	13	-	-94.903	5.148	11.976	0.456	0.000	0.000	20.189	0.481	0.056	0.002	180.302	16.905	1590.420	71.694	3.421	0.674	-407.384	36.274	-261.960	42.426	-34.878	4.826	25
26	82	10	-	-94.568	1.367	13.254	0.087	0.021	0.007	23.375	0.213	0.050	0.002	139.468	19.278	1733.650	35.788	-7.849	1.524	-244.905	20.819	-157.122	27.990	-51.684	5.303	26
27	74	10	-	-93.734	3.985	11.956	0.081	0.099	0.007	22.498	0.236	0.080	0.002	301.590	4.206	1764.012	79.875	-3.076	3.370	-299.142	56.102	-58.541	44.764	-60.989	9.410	27
28	19	17	-	-92.956	3.507	13.908	0.268	0.026	0.015	23.921	0.385	0.050	0.004	266.721	14.416	1827.332	46.565	-0.139	2.193	-381.233	53.830	-157.755	45.492	-43.242	7.955	28
29	122	6	-	-92.745	8.304	12.279	0.037	0.000	0.000	19.752	0.060	0.057	0.000	181.589	15.741	1752.342	47.374	1.028	1.586	-279.507	47.440	-153.948	58.429	-56.030	3.553	29
30	6	22	-	-90.730	14.656	15.634	0.186	0.000	0.000	24.460	0.283	0.039	0.001	184.504	30.414	1646.735	13.700	-4.965	3.284	-279.679	35.172	-143.454	66.675	-48.279	4.415	30
31	9	20	-	-90.251	2.575	13.154	0.202	0.017	0.000	20.607	0.234	0.058	0.001	245.319	26.351	1504.862	38.200	10.189	2.033	-416.678	30.459	-212.996	51.332	-41.636	4.161	31
32	22	16	-	-90.038	7.776	13.627	0.190	0.021	0.014	24.214	0.496	0.048	0.006	184.562	6.921	1689.253	49.205	-3.136	2.159	-268.492	14.412	-135.590	22.903	-51.660	5.142	32
33	26	14	-	-89.241	3.176	12.877	0.056	0.073	0.014	20.812	0.219	0.077	0.005	219.898	7.800	1397.388	66.657	9.547	1.503	-442.622	29.172	-254.977	24.167	-32.253	2.642	33
34	115	7	-	-88.870	18.331	12.362	0.132	0.000	0.000	18.819	0.127	0.061	0.001	204.335	46.807	1699.523	139.984	12.768	1.118	-465.403	38.996	-290.059	88.987	-28.991	5.403	34
35	31	13	-	-88.274	9.696	11.822	0.027	0.000	0.000	20.745	0.055	0.053	0.000	212.259	7.756	1703.915	75.126	7.349	1.187	-401.980	29.718	-226.174	34.586	-36.453	5.963	35
36	51	10	-	-88.060	5.613	14.394	0.033	0.013	0.007	23.261	0.216	0.047	0.003	186.626	10.473	1530.995	13.755	-0.823	1.396	-285.016	40.961	-147.287	46.363	-48.896	3.714	36
37	4	27	-	-87.381	3.159	14.366	0.075	0.000	0.000	23.345	0.143	0.043	0.000	262.042	8.675	1685.735	33.973	2.679	1.701	-375.458	19.104	-154.588	19.121	-41.172	3.024	37
38	66	10	-	-86.618	5.301	14.360	0.065	0.065	0.007	22.073	0.117	0.068	0.002	175.771	18.244	1654.713	31.971	9.575	0.751	-391.041	27.344	-250.832	30.637	-35.561	2.215	38
39	105	9	-	-86.351	7.447	12.441	0.119	0.000	0.000	21.061	0.886	0.052	0.003	203.393	38.498	1621.940	67.036	11.485	4.238	-397.087	49.285	-232.452	34.907	-38.758	6.513	39
40	2	28	-	-85.386	3.721	8.292	0.100	0.060	0.009	14.033	0.238	0.120	0.004	223.683	20.263	1444.425	18.443	16.980	1.268	-531.053	52.923	-325.894	45.805	-18.524	8.161	40
41	99	10	-	-85.318	3.371	14.167	0.142	0.000	0.000	23.073	0.125	0.044	0.000	210.252	30.361	1688.745	36.455	-3.802	1.262	-232.285	17.646	-78.117	29.587	-56.084	2.159	41
42	103	10	-	-84.777	7.347	9.713	0.045	0.000	0.000	15.319	0.158	0.086	0.001	211.814	17.902	1762.062	62.020	-2.237	1.474	-302.213	19.881	-133.678	10.735	-43.278	8.354	42
43	11	20	-	-84.755	3.002	10.202	0.038	0.000	0.000	16.040	0.210	0.080	0.001	242.024	11.938	1664.300	32.341	-1.048	2.058	-320.478	20.571	-122.268	20.568	-43.814	3.539	43
44	27	14	-	-84.385	4.142	14.452	0.099	0.000	0.000	22.747	0.072	0.044	0.001	192.791	15.745	1680.112	60.521	8.681	0.414	-322.106	22.136	-177.239	23.588	-47.924	4.456	44
45	30	13	-	-83.349	7.710	12.527	0.328	0.000	0.000	20.534	1.002	0.054	0.004	205.630	34.703	1630.215	82.132	0.730	2.859	-288.909	10.434	-130.138	41.408	-46.861	4.465	45
46	15	19	-	-82.368	3.129	13.418	0.325	0.043	0.009	23.280	0.386	0.058	0.004	242.751	6.286	1658.195	38.410	5.431	0.414	-341.193	32.419	-142.278	23.070	-43.836	6.151	46
47	20	16	-	-81.607	6.919	12.495	0.107	0.000	0.000	19.252	0.363	0.059	0.002	266.161	42.181	1672.205	55.410	5.343	4.413	-414.589	26.369	-179.076	49.862	-30.648	5.816	47
48	76	10	-	-81.449	9.534	13.188	0.037	0.000	0.000	21.421	0.074	0.050	0.001	218.734	15.090	1736.692	89.208	-0.001	1.199	-290.595	36.010	-117.063	50.613	-45.203	3.614	48
49	8	20	-	-81.182	4.279	10.455	0.122	0.000	0.000	16.979	0.225	0.073	0.002	202.172	4.326	1751.410	32.215	6.297	1.591	-296.855	38.493	-143.008	36.221	-48.325	6.151	49
50	83	10	-	-80.925	4.370	12.827	0.095	0.000	0.000	18.830	0.175	0.061	0.001	178.048	13.548	1484.358	38.444	5.855	0.509	-387.956	12.917	-236.901	11.192	-26.994	3.744	50
51	80	10	-	-80.920	1.233	8.605	0.110	0.000	0.000	14.204	0.254	0.098	0.003	263.125	9.132	1680.088	44.302	-2.533	1.044	-276.380	9.676	-62.678	11.913	-49.423	2.206	51
52	65	10	-	-80.630	3.310	14.620	0.066	0.000	0.000	22.569	0.112	0.045	0.000	288.688	2.621	1667.402	19.562	6.148	0.292	-359.050	7.320	-114.200	9.850	-43.837	2.804	52
53	78	10	-	-80.553	1.319	15.253	0.064	0.000	0.000	23.967	0.193	0.041	0.001	243.820	10.141	1722.265	32.414	-6.757	0.875	-233.628	32.754	-41.260	21.926	-51.452	6.462	53
54	91	10	-	-80.434	7.690	12.606	0.433	0.065	0.007	22.027	0.766	0.070	0.005	239.985	31.342	1715.950	113.990	-2.244	1.763	-276.599	35.568	-83.483	44.904	-46.869	5.835	54
55	86	10	-	-79.938	1.932	14.133	0.054	0.000	0.000	21.594	0.090	0.049	0.001	234.653	13.341	1560.172	37.779	-2.434	3.230	-216.869	17.452	-39.812	24.206	-57.595	0.798	55
56	94	10	-	-79.785	3.074	14.163	0.044	0.000	0.000	23.755	0.224	0.042	0.001	233.620	10.459	1617.775	27.712	-4.985	3.008	-246.368	23.556	-61.636	15.735	-48.888	3.624	56
57	57	10	-	-79.647	3.136	14.334	0.035	0.000	0.000	22.584	0.139	0.045	0.001	206.786	21.758	1752.880	43.951	4.484	1.474	-292.769	26.191	-132.238	35.347	-46.255	2.074	57
58	109	8	-	-79.637	4.090	14.374	0.029	0.000	0.000	23.226	0.171	0.043	0.001	179.447	18.968	1587.280	48.041	-6.736	4.312	-216.970	21.146	-84.975	34.722	-47.452	4.918	58
59	125	4	-	-79.181	3.093	13.707	0.110	0.013	0.007	25.049	0.264	0.043	0.002	208.704	5.337	1603.477	18.923	0.803	3.084	-320.220	17.996	-148.327	16.357	-36.811	2.829	59
60	75	10	-	-79.050	2.188	9.582	0.072	0.013	0.007	17.607	0.404	0.075	0.002	255.051	11.542	1487.710	19.121	-3.626	3.331	-272.006	25.775	-63.483	15.928	-46.528	1.228	60
61	21	16	-	-78.910	7.107	12.204	0.791	0.000	0.000	19.571	0.565	0.058	0.003	265.529	23.762	1628.423	100.079	-7.391	2.450	-259.371	19.026	-40.040	31.465	-46.198	2.505	61
62	119	6	-	-78.891	12.708	12.225	0.073	0.000	0.000	21.918	0.277	0.049	0.001	183.873	60.583	1612.245	43.225	5.173	2.252	-342.645	40.522	-192.694	94.271	-33.921	1.601	62
63	32	12	-	-78.111	4.787	11.640	0.490	0.030	0.007	19.381	0.419	0.070	0.005	224.618	24.572	1458.675	59.540	12.585	2.659	-404.922	39.771	-212.478	43.741	-32.174	7.745	63
64	93	10	-	-75.558	0.893	15.617	0.035	0.000	0.000	25.553	0.142	0.036	0.001	234.040	18.302	1612.077	87.261	-2.881	1.880	-222.506	13.334	-40.046	22.117	-51.580	3.451	64
65	53	10	-	-74.878	0.925	11.095	0.055	0.000	0.000	19.669	0.309	0.058	0.001	217.684	13.625	1737.645	54.714	4.811	2.265	-267.514	39.563	-97.784	28.401	-47.954	8.106	65
66	50	10	-	-74.229	3.215	9.398	0.118	0.000	0.000	15.157	0.226	0.088	0.002	201.585	13.616	1307.077	34.282	7.107	1.138	-346.429	18.226	-177.052	16.240	-32.209	2.692	66
67	46	10	-	-74.057	6.696	13.393	0.171	0.038	0.008	20.998	0.234	0.064	0.004	182.613	28.046	1532.910	44.960	11.778	4.762	-283.146	29.545	-148.000	30.970	-47.467	2.189	67
68	10	20	-	-73.940	3.036	10.540	0.046	0.017	0.000	19.176	0.153	0.067	0.001	356.795	15.142	1492.230	74.353	15.509	2.170	-510.698	9.877	-176.892	19.108	-22.989	0.857	68
69	44	10	-	-73.811	2.120	13.513	0.025	0.000	0.000	20.546	0.111	0.052	0.001	210.162	18.014	1370.822	23.324	5.688	1.348	-373.221	16.893	-188.930	22.084	-25.871	3.664	69
70	101	10	-	-73.605	5.664	7.585	0.291	0.194	0.007	15.971	0.612	0.151	0.003	239.400	28.980	1437.820	17.631	2.496	1.252	-306.286	30.593	-105.669	8.236	-38.784	7.589	70
71	73	10	-	-73.330	14.683	8.421	0.080	0.142	0.022	16.234	0.195	0.129	0.007	291.068	13.141	1524.905	74.286	7.236	1.570	-318.544	28.529	-73.439	41.719	-45.964	8.000	71
72	79	10	-	-72.710	2.560	11.891	0.070	0.017	0.000	21.817	0.101	0.055	0.000	267.791	10.125	1643.050	30.536	-1.153	0.712	-316.054	21.622	-83.389	26.219	-35.125	3.184	72
73	108	8	-	-72.053	6.427	14.141	0.080	0.000	0.000	22.606	0.088	0.045	0.000	274.130	28.215	1575.818	26.120	2.867	4.129	-353.149	37.289	-110.722	50.901	-31.703	6.123	73
74	116	7	-	-71.931	3.431	14.263	0.020	0.021	0.007	21.881	0.092	0.055	0.002	239.220	23.289	1488.585	51.307	11.289	2.327	-337.511	20.455	-137.931	34.222	-39.639	2.696	74
75	23	15	-	-71.317	1.735	9.651	0.111	0.000	0.000	15.522	0.401	0.085	0.003	194.466	13.162	1484.050	42.048	9.548	1.288	-290.001	20.663	-137.847	15.853	-42.312	1.866	75
76	24	15	-	-71.030	2.953	16.556	0.115	0.000	0.000	28.355	0.305	0.030	0.000	205.405	8.091	1334.508	11.170	-5.633	2.051	-183.413	17.299	-27.264	20.045	-49.255	2.861	76
77	28	13	-	-70.176	3.460	14.159	0.213	0.004	0.007	22.016	0.254	0.048	0.003	212.614	35.492	1491.645	40.439	8.647	0.432	-294.032	36.700	-122.695	8.604	-41.277	2.477	77
78	37	11	-	-69.964	1.337	15.376	0.133	0.000	0.000	25.078	0.326	0.037	0.001	271.813	14.529	1713.650	51.673	-7.231	2.128	-241.582	17.736	-11.367	27.829	-41.599	3.838	78
79	123	5	-	-69.304	4.503	16.450	0.148	0.000	0.000	27.833	0.537	0.031	0.001	210.556	19.322	1326.200	45.711	-5.965	1.162	-161.157	6.948	-2.764	25.378	-52.163	3.012	79
80	106	9	-	-67.503	6.037	12.789	0.289	0.026	0.015	23.061	1.336	0.053	0.002	296.781	34.983	1620.858	52.591	5.560	2.969	-348.713	38.348	-84.930	63.453	-32.998	4.669	80
81	120	6	-	-67.302	2.532	14.358	0.041	0.000	0.000	22.837	0.023	0.044	0.000	271.706	12.518	1634.723	24.273	0.998	1.097	-227.589	9.829	-5.836	14.119	-49.953	3.620	81
82	55	10	-	-67.097	3.840	6.036	0.861	0.090	0.014	12.039	0.749	0.162	0.019	384.023	42.496	1531.295	87.955	3.794	4.479	-454.914	59.765	-89.202	76.199	-18.311	9.697	82
83	124	4	-	-66.655	5.062	6.249	0.264	0.224	0.012	11.025	0.671	0.217	0.008	235.183	27.050	1650.928	104.661	12.126	3.442	-328.671	31.748	-130.053	21.804	-36.565	3.933	83
84	34	11	-	-66.442	5.053	14.336	0.479	0.056	0.023	24.830	1.011	0.057	0.010	253.232	30.608	1472.758	125.167	2.441	1.679	-290.510	38.258	-73.383	33.664	-36.105	2.888	84
85	38	10	-	-64.966	3.389	12.351	0.042	0.000	0.000	18.220	0.062	0.065	0.001	237.737	22.406	1463.210	47.096	18.877	2.622	-395.482	9.668	-186.266	30.185	-28.521	1.362	85
86	62	10	-	-64.964	5.998	7.746	0.112	0.004	0.007	15.178	0.486	0.093	0.004	271.487	9.093	1577.678	76.023	-0.556	4.196	-206.951	36.880	14.369	36.913	-50.167	1.787	86
87	25	15	-	-64.334	4.335	13.027	0.411	0.021	0.007	23.541	0.557	0.050	0.001	185.122	8.359	1583.560	19.045	-1.219	6.525	-176.576	111.800	-37.766	99.230	-46.312	12.209	87
88	42	10	-	-62.875	14.148	14.485	0.024	0.000	0.000	23.143	0.209	0.043	0.001	179.610	11.087	1721.772	71.776	12.319	3.484	-243.120	35.868	-108.042	47.241	-44.532	3.820	88
89	84	10	-	-62.085	1.306	14.514	0.132	0.000	0.000	22.149	0.316	0.046	0.001	296.997	14.696	1383.428	30.064	1.898	3.669	-292.144	12.479	-30.401	25.823	-35.254	1.893	89
90	121	6	-	-61.957	4.116	12.331	0.311	0.000	0.000	19.451	0.605	0.058	0.003	270.992	23.909	1274.112	82.006	4.029	2.380	-266.295	41.053	-35.130	24.369	-39.827	4.542	90
91	36	11	-	-61.811	2.141	14.445	0.058	0.000	0.000	22.627	0.070	0.045	0.000	270.514	14.399	1609.382	28.876	1.751	1.481	-254.673	33.427	-23.837	34.147	-39.679	5.666	91
92	77	10	-	-61.079	5.725	5.780	0.082	0.039	0.015	10.799	0.259	0.162	0.009	240.534	37.298	1483.005	50.398	-0.002	2.077	-182.518	25.073	9.390	46.237	-48.626	2.883	92
93	117	6	-	-60.777	11.533	9.801	0.191	0.013	0.007	21.006	0.640	0.059	0.004	246.636	8.427	1268.660	71.298	6.936	2.487	-314.050	22.326	-96.981	32.734	-29.567	6.294	93
94	85	10	-	-60.209	2.297	11.213	0.218	0.000	0.000	18.816	0.542	0.062	0.003	381.891	10.325	1459.902	67.889	-2.759	1.863	-266.267	22.682	73.237	24.125	-42.386	2.780	94
95	126	4	-	-59.397	3.161	13.514	0.088	0.000	0.000	20.613	0.206	0.052	0.001	340.899	11.341	1457.237	38.500	0.742	1.761	-285.606	3.678	18.186	8.403	-37.107	1.557	95
96	63	10	-	-59.291	7.296	9.014	0.111	0.000	0.000	16.822	0.663	0.077	0.005	280.676	22.422	1318.048	29.172	9.234	1.737	-325.262	28.578	-76.127	49.934	-31.541	1.854	96
97	70	10	-	-58.877	4.462	13.014	0.056	0.000	0.000	22.464	0.254	0.046	0.001	228.543	28.692	1422.508	65.438	-4.012	3.320	-200.927	16.946	-9.918	31.989	-37.534	1.424	97
98	45	10	-	-58.029	6.480	7.814	0.140	0.017	0.000	13.251	0.317	0.115	0.004	229.389	29.836	1404.900	46.790	11.103	1.955	-327.900	39.785	-125.001	51.497	-26.490	2.094	98
99	68	10	-	-55.807	3.727	16.510	0.066	0.000	0.000	25.624	0.263	0.036	0.001	318.869	16.264	1213.652	9.474	-5.589	2.224	-229.506	11.490	53.160	7.966	-36.203	3.035	99
100	67	10	-	-55.715	3.802	14.121	0.078	0.073	0.007	23.021	0.127	0.068	0.003	364.598	7.533	1424.082	38.150	0.216	3.221	-301.127	9.515	31.305	11.925	-32.166	2.426	100
101	43	10	-	-55.357	4.538	13.771	0.174	0.000	0.000	22.382	0.222	0.046	0.001	315.525	17.911	1224.170	95.586	15.578	3.930	-449.307	38.562	-146.408	51.664	-12.626	5.604	101
102	60	10	-	-55.224	0.578	14.483	0.242	0.000	0.000	26.049	0.668	0.036	0.002	237.155	10.847	1474.113	27.846	0.259	1.804	-152.957	35.644	35.591	28.921	-48.607	4.912	102
103	59	10	-	-55.141	2.610	14.717	0.093	0.034	0.000	23.704	0.289	0.053	0.001	298.384	26.262	1406.250	66.647	9.341	3.393	-316.841	23.707	-49.410	30.705	-30.952	4.042	103
104	112	7	-	-54.921	9.461	10.685	0.208	0.073	0.026	18.506	0.476	0.089	0.007	219.840	44.971	1521.922	81.424	5.709	7.046	-214.847	15.424	-34.651	49.783	-39.644	4.737	104
105	5	22	-	-54.314	4.331	12.385	0.086	0.021	0.014	22.595	0.342	0.053	0.006	233.002	17.524	1358.430	35.130	1.471	0.185	-207.591	22.952	-12.155	32.463	-37.567	1.570	105
106	52	10	-	-53.491	15.207	12.353	0.103	0.000	0.000	22.051	0.367	0.048	0.001	233.007	31.498	1414.820	102.212	3.750	1.618	-249.119	20.721	-46.830	57.818	-30.718	7.272	106
107	111	7	-	-53.239	5.226	13.791	0.212	0.000	0.000	23.428	0.626	0.043	0.002	268.166	12.080	1414.135	56.300	7.739	1.257	-222.832	3.164	2.106	14.206	-43.228	4.768	107
108	54	10	-	-52.971	3.488	14.200	0.033	0.000	0.000	23.847	0.087	0.041	0.000	334.087	9.226	1546.130	36.750	-6.005	1.905	-190.261	19.194	101.503	17.352	-42.322	4.900	108
109	56	10	-	-51.490	5.020	13.521	0.052	0.000	0.000	22.416	0.243	0.046	0.001	293.306	19.777	1477.102	25.522	5.609	1.461	-279.596	12.796	-16.800	25.540	-30.510	5.347	109
110	118	6	-	-51.117	4.561	12.365	0.051	0.000	0.000	23.714	0.346	0.043	0.001	278.889	18.649	1432.265	9.470	0.370	2.751	-214.671	17.337	27.776	25.570	-36.442	3.072	110
111	107	9	-	-49.501	5.059	14.835	0.038	0.000	0.000	23.410	0.057	0.042	0.000	344.941	19.284	1343.577	12.807	-3.153	1.679	-264.398	20.388	52.580	29.967	-27.963	9.609	111
112	35	11	-	-49.340	2.447	11.317	0.928	0.039	0.015	20.295	1.572	0.069	0.011	235.385	37.942	1409.605	87.748	4.069	3.360	-185.705	44.350	9.873	43.861	-39.807	8.325	112
113	33	12	-	-46.737	4.308	11.174	0.816	0.000	0.000	19.641	1.416	0.059	0.007	310.128	20.042	1238.068	110.488	4.568	2.574	-256.976	22.111	22.230	37.127	-30.923	2.384	113
114	113	7	-	-45.800	5.982	10.348	0.124	0.000	0.000	18.316	0.481	0.066	0.003	282.571	18.197	1311.367	56.380	4.791	1.847	-211.064	18.902	34.872	19.595	-36.635	3.931	114
115	81	10	-	-45.354	6.929	16.636	0.096	0.000	0.000	25.863	0.726	0.035	0.002	308.236	11.719	1275.400	52.716	-5.692	4.714	-181.522	49.756	92.533	51.322	-34.181	9.503	115
116	49	10	-	-44.705	1.959	10.852	0.035	0.000	0.000	16.845	0.062	0.074	0.000	358.788	5.112	1341.040	72.642	10.412	2.121	-347.849	36.059	-10.488	33.632	-21.427	6.467	116
117	39	10	-	-44.261	4.620	14.087	0.056	0.000	0.000	22.835	0.013	0.044	0.000	295.495	17.162	1234.227	27.363	4.174	3.430	-210.269	16.733	49.294	18.637	-35.931	4.941	117
118	92	10	-	-44.053	1.106	15.813	0.128	0.000	0.000	25.745	0.368	0.036	0.001	283.916	13.486	1275.445	30.036	-6.639	1.857	-143.568	20.594	103.256	10.722	-37.092	1.745	118
119	114	7	-	-43.996	7.676	13.036	0.151	0.000	0.000	21.041	0.248	0.051	0.001	318.293	22.689	1397.472	69.100	6.502	2.294	-242.837	58.413	41.697	35.569	-33.760	4.092	119
120	127	4	-	-42.868	12.804	10.782	0.266	0.021	0.007	18.935	0.277	0.070	0.003	378.484	32.539	1279.013	79.482	-2.333	3.174	-249.324	69.688	100.641	96.319	-28.519	2.196	120
121	97	10	-	-41.988	1.493	15.101	0.025	0.000	0.000	23.745	0.034	0.041	0.000	301.125	3.112	1269.653	33.464	-8.743	1.470	-129.712	11.741	133.997	11.234	-37.416	1.471	121
122	71	10	-	-41.763	0.892	8.507	0.097	0.039	0.015	14.685	0.147	0.107	0.006	239.057	9.121	1327.050	24.875	8.577	4.145	-218.493	30.755	-9.983	30.699	-30.547	4.870	122
123	47	10	-	-36.220	3.928	15.277	0.106	0.000	0.000	23.010	0.110	0.043	0.000	284.950	8.282	1175.388	69.795	5.948	1.847	-213.173	34.270	43.748	38.868	-28.029	3.546	123
124	41	10	-	-32.454	10.820	12.104	0.204	0.000	0.000	20.116	0.705	0.056	0.003	396.786	30.865	1066.531	89.515	12.815	3.725	-377.880	29.248	9.535	54.759	-9.372	2.922	124
125	64	10	-	-27.162	1.992	10.301	0.345	0.000	0.000	18.657	0.861	0.065	0.005	402.122	49.749	1030.695	25.469	4.338	0.861	-257.608	45.825	124.323	22.168	-20.191	4.685	125
126	48	10	-	-14.746	4.336	10.121	0.049	0.000	0.000	18.586	0.361	0.065	0.002	357.317	19.257	1018.395	44.464	1.525	1.784	-147.322	10.412	187.457	30.279	-22.539	2.476	126
127	69	10	-	-13.047	2.110	13.381	0.036	0.000	0.000	23.537	0.088	0.043	0.000	326.021	21.144	1056.715	43.823	-2.112	1.084	-98.899	7.148	203.364	15.655	-23.757	1.618	127


How many clusters are generated?

Look at the score of the first few clusters: Are they significantly different if you consider their average scores and standard deviations?

Since for this tutorial we have at hand the crystal structure of the complex, we provided it as reference to the caprieval modules. This means that the iRMSD, lRMSD, Fnat and DockQ statistics report on the quality of the docked model compared to the reference crystal structure.

How many clusters of acceptable or better quality have been generate according to CAPRI criteria?

What is the rank of the best cluster generated?

What is the rank of the first acceptable of better cluster generated?

In this run we also had a caprieval after the clustering of the rigid body models (step 4 of our workflow).

Inspect the corresponding capri_clt.tsv file

View the pre-calculated 4_caprieval/capri_clt.tsv file expand_more
cluster_rank	cluster_id	n	under_eval	score	score_std	irmsd	irmsd_std	fnat	fnat_std	lrmsd	lrmsd_std	dockq	dockq_std	air	air_std	bsa	bsa_std	desolv	desolv_std	elec	elec_std	total	total_std	vdw	vdw_std	caprieval_rank
1	48	10	-	-13.844	0.900	13.404	0.035	0.000	0.000	22.237	0.123	0.046	0.001	1166.617	117.075	1315.115	40.932	-9.803	2.749	-3.493	0.991	1256.845	137.335	93.721	19.507	1
9	138	10	-	-10.454	0.674	13.607	0.000	0.000	0.000	22.064	0.000	0.047	0.000	1204.100	0.000	1665.775	24.438	-3.712	0.820	-2.350	0.000	1224.210	0.000	22.460	0.002	2
3	11	10	-	-10.412	0.432	15.857	0.000	0.000	0.000	24.564	0.000	0.039	0.000	1384.043	0.004	1245.633	13.154	-6.563	0.429	-5.648	0.000	1419.910	0.000	41.513	0.001	3
2	15	10	-	-10.340	0.286	16.017	0.000	0.000	0.000	24.570	0.000	0.039	0.000	1333.983	0.004	1253.492	15.726	-1.585	0.327	-9.873	0.000	1355.403	0.004	31.294	0.002	4
4	106	10	-	-9.829	0.222	15.391	0.000	0.000	0.000	24.525	0.000	0.039	0.000	1552.235	0.005	1383.528	17.921	-7.734	0.159	-4.185	0.000	1588.340	0.000	40.293	0.003	5
6	69	10	-	-9.533	1.575	12.950	0.269	0.000	0.000	20.490	1.095	0.054	0.005	1276.435	67.292	1199.227	109.102	-8.069	0.667	-2.824	1.663	1332.377	61.750	58.763	7.369	6
5	83	10	-	-9.012	0.282	14.254	0.000	0.000	0.000	22.921	0.000	0.044	0.000	1276.120	0.010	1183.360	18.970	-3.152	0.213	-7.525	0.000	1342.325	0.005	73.727	0.006	7
7	80	10	-	-7.775	0.494	9.909	0.113	0.000	0.000	15.681	0.333	0.083	0.002	1542.185	35.608	1324.515	18.563	-4.813	0.320	-5.803	0.471	1602.840	32.869	66.456	2.271	8
12	146	10	-	-7.423	0.848	14.398	0.000	0.000	0.000	23.944	0.000	0.041	0.000	1442.685	0.005	1299.652	32.980	-7.305	1.130	-1.911	0.000	1476.980	0.000	36.202	0.001	9
8	103	10	-	-7.333	0.221	14.981	0.000	0.000	0.000	24.008	0.000	0.040	0.000	1543.658	0.004	1030.420	14.645	-10.900	0.124	-2.262	0.000	1610.960	0.000	69.566	0.001	10
10	57	10	-	-6.935	0.458	14.379	0.000	0.000	0.000	23.639	0.000	0.042	0.000	1222.643	0.004	1453.100	18.107	-6.100	0.353	0.439	0.000	1326.150	0.000	103.066	0.004	11
19	143	10	-	-6.913	0.973	15.057	0.055	0.000	0.000	23.498	0.016	0.042	0.000	1637.182	34.931	1089.412	27.157	-8.432	1.560	-4.361	0.102	1673.073	22.235	40.253	12.796	12
11	46	10	-	-6.612	0.137	7.774	0.000	0.138	0.000	16.369	0.000	0.129	0.000	1427.530	0.000	1264.045	12.113	-2.676	0.088	-6.756	0.000	1539.297	0.004	118.522	0.001	13
13	74	10	-	-6.451	0.515	12.795	0.110	0.000	0.000	21.337	0.231	0.050	0.001	1227.858	0.583	1320.807	16.754	-3.158	0.556	-2.694	0.171	1258.178	3.958	33.012	4.713	14
14	40	10	-	-6.057	0.570	14.552	0.000	0.000	0.000	23.108	0.000	0.043	0.000	1325.322	0.004	1317.838	17.495	-3.007	0.666	-3.439	0.000	1353.310	0.000	31.430	0.001	15
17	54	10	-	-5.998	0.121	12.456	0.000	0.000	0.000	19.696	0.000	0.057	0.000	1314.395	0.005	1310.680	23.796	-1.208	0.317	-5.261	0.000	1352.630	0.000	43.495	0.001	16
15	32	10	-	-5.964	0.425	14.596	0.115	0.000	0.000	23.358	0.122	0.043	0.000	1277.912	7.923	1285.055	82.743	-3.391	0.456	-2.900	0.806	1314.905	3.200	39.893	5.527	17
16	12	10	-	-5.777	0.104	13.551	0.000	0.017	0.000	23.658	0.000	0.048	0.000	1198.952	0.008	1149.155	9.000	-1.300	0.161	-5.170	0.000	1213.340	0.000	19.559	0.004	18
18	124	10	-	-5.691	0.215	14.454	0.000	0.017	0.000	23.355	0.000	0.048	0.000	1416.720	0.007	1374.565	18.449	-4.243	0.272	-2.310	0.000	1458.433	0.004	44.024	0.004	19
21	56	10	-	-5.412	0.747	15.959	0.000	0.000	0.000	25.689	0.001	0.036	0.000	1217.487	0.004	1439.070	19.619	-0.762	0.765	-2.668	0.000	1238.170	0.000	23.352	0.001	20
29	104	10	-	-5.375	0.124	13.872	0.000	0.000	0.000	20.781	0.000	0.052	0.000	1406.888	0.015	1020.282	14.806	-3.770	0.202	-6.285	0.000	1481.987	0.004	81.386	0.009	21
20	49	10	-	-5.250	0.321	15.360	0.000	0.000	0.000	23.819	0.000	0.041	0.000	1494.370	0.000	1010.559	24.070	-8.385	0.381	-2.102	0.000	1532.178	0.004	39.910	0.001	22
23	14	10	-	-4.989	1.157	10.910	0.000	0.000	0.000	21.035	0.000	0.053	0.000	1197.435	0.015	1289.438	22.539	-1.583	1.033	-2.975	0.000	1243.383	0.004	48.924	0.011	23
24	44	10	-	-4.755	0.228	11.912	0.000	0.034	0.000	22.612	0.000	0.058	0.000	1538.758	0.004	1152.660	13.464	-4.545	0.280	-4.549	0.000	1582.030	0.000	47.828	0.000	24
25	29	10	-	-4.750	0.679	10.824	0.420	0.009	0.009	18.404	1.004	0.068	0.006	1371.130	157.122	1214.263	97.267	-3.579	1.850	-3.541	1.647	1447.700	178.555	80.112	41.852	25
22	23	10	-	-4.670	0.217	13.640	0.000	0.000	0.000	20.717	0.000	0.052	0.000	1074.330	0.000	1374.390	4.007	0.869	0.209	-2.729	0.000	1090.750	0.000	19.152	0.001	26
28	38	10	-	-4.363	0.605	16.033	0.155	0.000	0.000	25.480	0.271	0.036	0.001	1238.952	29.106	1052.057	45.106	-7.738	1.761	1.048	2.035	1285.750	39.525	45.747	12.456	27
27	1	10	-	-4.137	0.568	10.316	0.088	0.000	0.000	16.498	0.391	0.076	0.003	1721.757	67.381	1135.003	53.658	-4.618	0.422	-5.766	0.216	1754.023	66.472	38.026	0.691	28
26	27	10	-	-4.112	0.152	12.983	0.000	0.000	0.000	20.773	0.000	0.052	0.000	1139.570	0.000	1462.320	16.198	1.793	0.279	-2.812	0.000	1150.210	0.000	13.452	0.001	29
30	61	10	-	-4.099	0.842	13.370	0.239	0.000	0.000	21.815	0.084	0.048	0.000	1308.007	135.944	1550.715	205.819	1.005	1.959	-2.987	1.590	1336.082	149.353	31.061	14.996	30
37	112	10	-	-3.676	0.381	14.796	0.000	0.000	0.000	22.998	0.000	0.043	0.000	1486.800	0.000	1227.990	15.606	-0.708	0.396	-6.135	0.000	1538.500	0.000	57.833	0.002	31
31	34	10	-	-3.597	0.147	14.799	0.061	0.000	0.000	23.015	0.136	0.043	0.001	1310.543	23.128	1183.075	91.732	-0.950	0.684	-4.455	0.136	1359.398	1.033	53.309	21.961	32
32	7	10	-	-3.508	0.513	16.858	0.000	0.000	0.000	28.409	0.000	0.030	0.000	1301.480	0.000	1196.672	8.578	-4.923	0.571	-0.218	0.000	1359.760	0.000	58.499	0.001	33
33	20	10	-	-2.773	0.374	14.904	0.000	0.000	0.000	23.214	0.000	0.043	0.000	1183.130	0.000	1460.190	23.915	1.641	0.539	-1.872	0.000	1204.100	0.000	22.843	0.001	34
35	77	10	-	-2.739	0.764	12.238	0.036	0.000	0.000	19.323	0.055	0.059	0.000	1282.035	90.578	1268.540	64.375	-0.585	2.814	-2.576	0.397	1308.220	104.985	28.759	14.014	35
42	42	10	-	-2.495	1.064	9.577	0.000	0.017	0.000	21.186	0.000	0.060	0.000	1085.117	0.004	1410.815	38.489	0.948	0.957	-0.636	0.000	1129.460	0.000	44.976	0.002	36
40	62	10	-	-2.017	0.480	14.651	0.000	0.000	0.000	22.953	0.000	0.044	0.000	1362.965	0.005	1379.763	20.658	2.498	0.488	-4.718	0.000	1395.325	0.005	37.078	0.003	37
34	64	10	-	-2.009	0.327	12.646	0.167	0.065	0.007	21.928	0.363	0.070	0.004	1227.983	17.299	1275.485	30.604	-2.275	0.709	0.190	0.874	1283.332	19.239	55.160	2.813	38
39	105	10	-	-1.975	0.713	11.651	0.000	0.086	0.000	20.866	0.000	0.082	0.000	1426.785	0.005	1445.892	18.713	-1.552	0.833	-0.564	0.000	1459.400	0.000	33.182	0.001	39
36	100	10	-	-1.974	0.614	14.641	0.375	0.017	0.000	25.137	0.604	0.044	0.001	1613.605	50.415	1285.878	28.846	-1.852	1.404	-4.480	2.223	1717.162	105.853	108.035	57.663	40
56	88	10	-	-1.877	1.153	14.595	0.000	0.017	0.000	22.930	0.000	0.050	0.000	1377.500	0.000	1256.900	19.112	1.216	1.144	-4.825	0.000	1425.230	0.000	52.558	0.001	41
41	36	10	-	-1.834	0.548	13.132	0.000	0.000	0.000	21.975	0.000	0.048	0.000	972.241	0.007	1488.515	12.437	5.426	0.465	-2.704	0.000	1030.163	0.004	60.625	0.003	42
38	30	10	-	-1.684	0.302	14.753	0.000	0.069	0.000	23.211	0.000	0.066	0.000	1193.767	0.018	1714.410	16.251	4.303	0.358	-0.954	0.000	1210.110	0.007	17.296	0.011	43
43	85	10	-	-1.494	0.422	2.535	0.000	0.345	0.000	6.023	0.000	0.423	0.000	1955.515	0.005	1609.628	8.936	11.827	0.474	-17.319	0.000	1992.133	0.004	53.936	0.002	44
48	75	10	-	-1.190	1.574	12.890	0.000	0.000	0.000	21.606	0.000	0.049	0.000	1678.058	0.004	1003.288	20.621	-3.349	1.741	-5.239	0.000	1737.880	0.000	65.063	0.003	45
44	4	10	-	-1.162	0.159	13.134	0.000	0.017	0.000	20.540	0.000	0.059	0.000	1402.763	0.004	1128.918	30.713	4.675	0.392	-8.789	0.000	1415.280	0.000	21.304	0.001	46
45	17	10	-	-1.158	0.437	14.586	0.000	0.017	0.000	22.061	0.000	0.052	0.000	1350.850	0.000	1109.115	12.543	4.974	0.472	-9.271	0.000	1413.800	0.000	72.221	0.002	47
46	127	10	-	-1.143	0.190	14.426	0.000	0.000	0.000	22.311	0.000	0.046	0.000	1326.025	0.005	1255.963	21.347	-0.151	0.291	-2.092	0.000	1363.835	0.005	39.904	0.003	48
58	149	10	-	-0.788	0.547	14.657	0.000	0.000	0.000	23.481	0.001	0.042	0.000	1230.210	0.012	1123.400	25.376	0.072	0.545	-2.759	0.000	1310.590	0.007	83.137	0.006	49
47	47	10	-	-0.634	0.202	10.615	0.000	0.000	0.000	17.214	0.000	0.072	0.000	1582.995	0.005	1101.400	8.505	-3.618	0.282	-2.392	0.000	1636.595	0.005	55.990	0.002	50
50	65	10	-	-0.544	0.694	14.396	0.000	0.000	0.000	21.711	0.000	0.048	0.000	1204.223	0.004	1317.295	29.407	1.424	0.855	-1.151	0.000	1234.443	0.004	31.369	0.004	51
49	123	10	-	-0.413	0.261	14.733	0.000	0.000	0.000	22.393	0.000	0.045	0.000	1690.878	0.013	1054.225	25.599	-2.721	0.379	-4.661	0.000	1746.453	0.008	60.234	0.010	52
53	41	10	-	-0.301	0.901	11.978	0.000	0.000	0.000	20.686	0.000	0.053	0.000	1281.405	0.005	1249.838	29.204	4.705	0.853	-6.289	0.001	1371.910	0.000	96.793	0.001	53
52	72	10	-	0.004	0.778	11.393	0.000	0.000	0.000	18.815	0.000	0.062	0.000	1841.592	0.004	1184.938	24.043	-2.198	0.990	-4.820	0.000	1882.420	0.000	45.649	0.002	54
55	60	10	-	0.009	0.555	12.540	0.000	0.000	0.000	22.058	0.000	0.048	0.000	1472.052	0.008	1173.470	32.950	1.109	0.517	-4.536	0.001	1512.588	0.004	45.071	0.002	55
51	33	10	-	0.107	0.243	13.624	0.000	0.000	0.000	22.164	0.000	0.047	0.000	1015.085	0.011	1247.485	25.589	6.940	0.203	-4.666	0.000	1026.035	0.005	15.620	0.008	56
64	107	10	-	0.205	0.370	10.381	0.000	0.017	0.000	18.922	0.000	0.069	0.000	1627.175	0.009	1123.535	23.337	-0.720	0.382	-4.857	0.000	1696.867	0.004	74.549	0.006	57
54	66	10	-	0.360	0.318	1.684	0.402	0.526	0.181	3.075	0.744	0.622	0.116	1597.793	284.803	1513.723	249.385	8.918	5.003	-10.031	0.661	1650.948	320.308	63.184	36.167	58
57	111	10	-	0.766	0.550	14.904	0.000	0.000	0.000	22.475	0.000	0.045	0.000	1626.950	0.007	1014.321	27.012	-1.440	0.342	-4.577	0.000	1688.060	0.000	65.685	0.004	59
59	55	10	-	0.858	0.540	13.865	0.000	0.017	0.000	23.838	0.000	0.047	0.000	1807.443	0.004	1378.845	3.558	8.995	0.538	-12.902	0.000	1842.455	0.005	47.919	0.003	60
62	147	10	-	0.956	0.701	15.581	0.054	0.000	0.000	24.005	0.203	0.041	0.001	1597.950	3.608	1254.088	53.590	-0.842	0.535	-1.931	0.759	1624.987	4.291	28.966	0.072	61
60	71	10	-	1.057	0.728	13.646	0.029	0.034	0.000	23.918	0.334	0.052	0.001	1631.675	116.506	1124.720	88.785	-3.940	2.101	-0.651	0.045	1688.805	101.923	57.782	14.540	62
109	113	10	-	1.060	0.681	12.545	0.000	0.000	0.000	19.286	0.000	0.059	0.000	1484.197	0.004	920.633	17.258	-2.448	0.516	-2.606	0.000	1529.520	0.000	47.929	0.002	63
80	91	10	-	1.140	0.825	5.592	0.000	0.069	0.000	17.456	0.000	0.109	0.000	1030.130	0.012	1601.830	27.680	5.160	0.616	0.752	0.000	1125.423	0.004	94.540	0.008	64
61	22	10	-	1.547	0.489	12.884	0.000	0.000	0.000	18.658	0.000	0.062	0.000	1287.670	0.000	1227.920	26.361	2.087	0.630	-1.563	0.000	1328.707	0.004	42.597	0.002	65
65	142	10	-	1.609	0.465	13.598	0.001	0.000	0.000	20.523	0.000	0.053	0.000	1812.180	0.007	1242.125	9.410	4.169	0.487	-8.600	0.001	1837.472	0.004	33.893	0.006	66
63	2	10	-	1.618	0.620	11.163	0.000	0.052	0.000	19.921	0.000	0.074	0.000	1612.010	0.007	1142.242	17.089	0.629	0.472	-4.038	0.000	1640.850	0.000	32.880	0.004	67
71	79	10	-	1.719	0.983	12.761	0.000	0.000	0.000	18.973	0.000	0.060	0.000	1428.622	0.004	1202.068	29.316	6.850	1.082	-7.824	0.000	1463.520	0.000	42.716	0.002	68
69	53	10	-	1.771	1.118	14.068	0.000	0.000	0.000	22.330	0.000	0.046	0.000	1316.773	0.004	1285.473	14.217	6.192	1.087	-4.974	0.001	1335.790	0.000	23.991	0.001	69
67	21	10	-	1.840	0.428	10.784	0.000	0.034	0.000	19.322	0.000	0.072	0.000	1285.688	0.008	1117.495	10.149	-0.691	0.439	0.523	0.001	1318.855	0.005	32.646	0.006	70
70	134	10	-	1.845	0.422	11.423	0.000	0.000	0.000	19.694	0.000	0.058	0.000	1223.665	0.005	1143.160	12.317	3.324	0.532	-2.622	0.000	1254.850	0.000	33.809	0.003	71
66	28	10	-	2.156	0.092	16.901	0.145	0.000	0.000	25.946	0.295	0.035	0.000	1664.168	128.023	953.917	39.846	-2.267	2.191	-3.344	0.114	1727.315	172.192	66.488	44.052	72
72	51	10	-	2.177	0.345	14.563	0.000	0.052	0.000	24.598	0.000	0.056	0.000	1316.715	0.009	1570.730	16.814	6.253	0.181	-2.070	0.000	1368.102	0.004	53.459	0.004	73
68	5	10	-	2.186	0.209	10.791	0.000	0.000	0.000	17.361	0.000	0.071	0.000	1320.465	0.009	1352.238	23.403	4.872	0.278	-2.775	0.000	1358.330	0.000	40.637	0.005	74
73	52	10	-	2.462	0.437	11.857	0.000	0.034	0.000	21.481	0.000	0.062	0.000	1332.390	0.007	1331.270	18.518	3.857	0.469	-2.157	0.000	1405.307	0.004	75.072	0.005	75
75	117	10	-	2.591	1.501	5.582	0.000	0.017	0.000	10.747	0.000	0.156	0.000	1471.223	0.004	1131.087	27.013	-0.164	1.301	-1.468	0.000	1551.900	0.000	82.145	0.003	76
76	121	10	-	2.757	0.190	15.413	0.030	0.000	0.000	23.407	0.072	0.042	0.000	1441.680	23.042	1181.880	26.999	2.544	0.494	-2.763	0.841	1476.762	16.185	37.844	6.016	77
74	8	10	-	2.804	0.346	9.774	0.000	0.000	0.000	15.587	0.000	0.084	0.000	1031.230	0.012	1151.565	3.228	4.639	0.312	-0.954	0.002	1062.565	0.005	32.287	0.005	78
77	125	10	-	2.956	0.265	9.059	0.000	0.000	0.000	14.582	0.000	0.093	0.000	1332.722	0.004	1325.645	17.543	-0.222	0.167	2.522	0.000	1393.822	0.004	58.576	0.004	79
79	148	10	-	3.338	0.337	9.501	0.000	0.017	0.000	16.813	0.000	0.082	0.000	1373.653	0.004	1326.715	10.338	2.499	0.388	0.027	0.000	1407.895	0.005	34.216	0.003	80
78	43	10	-	3.420	0.161	13.876	0.062	0.000	0.000	24.966	0.181	0.038	0.000	1203.815	13.490	1353.628	21.704	3.673	0.639	0.968	0.680	1232.450	11.316	27.667	1.490	81
85	90	10	-	3.499	0.582	11.694	0.000	0.000	0.000	19.420	0.000	0.059	0.000	1524.062	0.008	1254.383	26.891	2.957	0.549	-2.600	0.000	1566.020	0.000	44.559	0.004	82
96	144	10	-	3.736	1.983	14.597	0.155	0.000	0.000	23.244	0.913	0.043	0.003	1638.918	27.535	1089.932	148.738	-1.437	2.850	-0.736	0.937	1680.150	26.411	41.970	7.550	83
83	81	10	-	4.181	0.676	10.556	0.000	0.017	0.000	19.500	0.000	0.066	0.000	1679.600	0.000	1209.035	23.242	8.004	0.495	-8.994	0.001	1717.150	0.000	46.546	0.001	84
86	126	10	-	4.231	0.820	13.402	0.000	0.000	0.000	22.864	0.000	0.045	0.000	1437.102	0.004	1009.162	9.760	-0.405	0.755	-0.675	0.000	1539.537	0.004	103.107	0.001	85
82	35	10	-	4.429	0.243	13.516	0.086	0.000	0.000	21.373	0.051	0.050	0.001	1422.540	1.230	1373.582	45.688	4.605	0.121	-1.357	0.944	1490.320	18.770	69.143	18.482	86
108	84	10	-	4.431	2.539	5.560	0.856	0.060	0.015	12.118	0.730	0.154	0.019	2052.713	82.831	1181.928	181.411	2.306	1.076	-7.277	0.965	2114.883	74.846	69.446	7.018	87
81	10	10	-	4.533	0.147	13.434	0.000	0.000	0.000	20.796	0.000	0.052	0.000	1313.870	0.017	1106.747	9.549	4.643	0.101	-2.606	0.002	1353.747	0.004	42.483	0.009	88
84	118	10	-	4.597	0.401	14.224	0.000	0.000	0.000	21.784	0.000	0.048	0.000	812.933	0.006	1561.932	19.206	6.094	0.589	5.630	0.001	854.980	0.002	36.417	0.005	89
87	133	10	-	4.605	0.650	12.937	0.000	0.000	0.000	23.370	0.000	0.043	0.000	1314.115	0.005	955.893	27.114	0.978	0.632	-0.502	0.000	1368.153	0.004	54.539	0.003	90
106	18	10	-	4.806	0.311	13.463	0.000	0.000	0.000	24.373	0.001	0.040	0.000	1207.367	0.004	1226.390	11.365	7.546	0.398	-2.879	0.000	1237.415	0.005	32.926	0.001	91
88	9	10	-	4.811	1.015	17.516	0.000	0.000	0.000	26.890	0.000	0.033	0.000	1593.650	0.007	852.707	14.236	-3.510	1.086	0.360	0.000	1649.222	0.004	55.215	0.003	92
89	76	10	-	4.921	0.828	8.479	0.001	0.121	0.000	16.155	0.009	0.123	0.000	1675.845	1.210	1128.490	24.540	5.340	0.543	-6.340	0.197	1714.182	0.917	44.677	0.098	93
92	135	10	-	5.104	0.801	12.373	0.000	0.000	0.000	21.291	0.001	0.051	0.000	1682.297	0.008	879.111	26.874	0.911	0.548	-4.271	0.002	1721.285	0.005	43.257	0.003	94
91	101	10	-	5.127	0.529	14.134	0.000	0.069	0.000	22.851	0.000	0.067	0.000	1774.452	0.004	1143.035	25.663	5.251	0.622	-6.708	0.000	1794.785	0.005	27.042	0.002	95
93	68	10	-	5.267	0.116	13.506	0.000	0.000	0.000	23.168	0.000	0.044	0.000	1270.545	0.042	903.954	16.269	3.013	0.114	-3.875	0.000	1513.010	0.016	246.341	0.028	96
90	98	10	-	5.488	0.197	12.076	0.000	0.052	0.000	22.598	0.000	0.064	0.000	1417.480	0.000	1486.365	17.352	4.645	0.302	1.068	0.000	1464.918	0.004	46.366	0.002	97
95	78	10	-	5.560	0.457	16.706	0.008	0.000	0.000	25.451	0.140	0.036	0.000	1842.725	31.353	944.442	50.103	0.728	0.730	-4.713	0.093	1894.173	29.224	56.160	2.221	98
94	24	10	-	5.636	0.329	8.495	0.000	0.034	0.000	14.545	0.000	0.106	0.000	1438.640	0.007	1052.645	15.771	1.940	0.237	-0.598	0.000	1481.457	0.004	43.412	0.003	99
98	82	10	-	5.912	1.108	9.062	0.000	0.000	0.000	15.621	0.000	0.085	0.000	1579.757	0.022	1004.099	15.653	5.426	1.168	-6.184	0.000	1665.025	0.011	91.451	0.016	100
100	102	10	-	6.178	0.304	7.429	0.009	0.000	0.000	13.326	0.125	0.110	0.002	1579.557	20.718	876.049	15.882	3.925	2.192	-5.419	1.923	1637.915	20.785	63.778	1.855	101
101	73	10	-	6.491	1.286	5.274	1.121	0.112	0.009	9.331	1.965	0.220	0.043	1572.305	148.870	1132.720	36.265	8.968	1.519	-7.591	0.267	1636.495	138.775	71.783	10.363	102
97	95	10	-	6.500	0.357	14.891	0.012	0.000	0.000	22.738	0.016	0.044	0.000	1324.383	41.675	1347.323	23.736	7.302	0.979	-1.935	0.308	1458.680	26.090	136.237	15.891	103
103	16	10	-	6.598	0.717	13.543	0.000	0.000	0.000	25.565	0.000	0.037	0.000	1435.965	0.023	965.739	17.475	4.647	0.755	-3.499	0.000	1507.220	0.007	74.752	0.014	104
113	131	10	-	6.748	0.706	11.362	0.097	0.000	0.000	21.172	0.035	0.052	0.000	1272.642	14.128	1152.102	20.187	2.181	0.890	2.808	0.199	1330.730	20.670	55.278	6.741	105
99	26	10	-	6.777	0.221	14.549	0.000	0.034	0.000	22.246	0.000	0.057	0.000	1337.785	0.005	1237.665	9.368	12.623	0.281	-7.317	0.000	1377.372	0.004	46.903	0.001	106
111	140	10	-	6.779	0.467	13.408	0.000	0.000	0.000	21.842	0.000	0.048	0.000	1701.625	0.009	1130.092	12.459	7.382	0.510	-6.848	0.000	1747.780	0.000	53.005	0.004	107
102	70	10	-	6.859	0.368	14.104	0.000	0.034	0.000	23.831	0.000	0.053	0.000	1421.310	0.007	1245.168	28.046	7.072	0.205	-2.606	0.000	1481.862	0.004	63.157	0.003	108
104	128	10	-	6.979	0.272	7.750	0.000	0.000	0.000	15.894	0.000	0.086	0.000	1565.898	0.004	1165.102	17.917	2.422	0.296	0.114	0.000	1609.468	0.004	43.454	0.002	109
105	37	10	-	7.074	0.273	11.212	0.000	0.017	0.000	19.176	0.000	0.066	0.000	1435.567	0.004	1069.815	30.137	5.507	0.352	-2.716	0.000	1495.420	0.000	62.566	0.003	110
107	63	10	-	7.255	0.593	12.974	0.000	0.017	0.000	23.438	0.000	0.049	0.000	1090.135	0.005	1330.148	10.453	2.694	0.583	6.481	0.000	1144.622	0.004	48.006	0.003	111
110	141	10	-	7.577	0.087	14.993	0.000	0.000	0.000	26.718	0.000	0.034	0.000	1348.737	0.004	1125.025	15.059	3.369	0.154	1.314	0.001	1415.803	0.004	65.755	0.004	112
112	39	10	-	7.717	1.437	13.076	0.000	0.034	0.000	21.292	0.000	0.062	0.000	1418.793	0.004	1031.657	36.860	7.200	1.546	-3.905	0.000	1469.900	0.000	55.008	0.004	113
115	87	10	-	7.749	0.454	13.090	0.000	0.000	0.000	23.222	0.000	0.044	0.000	1476.158	0.011	1272.345	14.120	8.203	0.331	-3.187	0.001	1542.362	0.004	69.394	0.007	114
114	19	10	-	8.156	0.557	9.610	0.000	0.000	0.000	14.939	0.000	0.089	0.000	1217.220	0.000	1305.247	14.882	12.752	0.458	-4.164	0.000	1257.840	0.000	44.788	0.001	115
121	145	10	-	8.234	0.328	10.233	0.000	0.000	0.000	18.503	0.000	0.065	0.000	1947.057	0.004	867.776	31.685	3.537	0.526	-6.582	0.000	1988.970	0.000	48.495	0.001	116
119	136	10	-	8.348	0.416	14.705	0.000	0.034	0.000	25.924	0.000	0.047	0.000	1386.100	0.007	1184.423	17.051	4.270	0.435	1.673	0.001	1426.608	0.004	38.834	0.003	117
122	108	10	-	8.381	0.460	14.681	0.085	0.000	0.000	23.063	0.127	0.043	0.001	1232.655	19.625	1256.318	24.006	9.329	0.902	-1.541	0.488	1314.030	2.905	82.916	16.234	118
118	59	10	-	8.410	0.499	14.607	0.000	0.000	0.000	22.480	0.000	0.045	0.000	1369.202	0.004	1270.800	13.880	9.935	0.543	-3.034	0.000	1418.590	0.000	52.421	0.003	119
117	6	10	-	8.515	0.753	15.939	0.155	0.000	0.000	24.412	0.259	0.039	0.000	1449.795	8.149	1040.126	30.813	3.445	1.306	-0.055	0.320	1552.490	52.943	102.751	44.470	120
116	25	10	-	8.519	0.328	14.667	0.000	0.034	0.000	24.106	0.000	0.052	0.000	1754.810	0.000	914.418	13.386	7.544	0.397	-8.388	0.000	1842.332	0.004	95.912	0.001	121
123	67	10	-	8.816	0.536	10.832	0.000	0.000	0.000	18.596	0.000	0.064	0.000	1463.985	0.005	1034.602	12.469	6.496	0.480	-2.527	0.000	1516.725	0.005	55.269	0.003	122
120	109	10	-	8.886	0.324	13.897	0.000	0.000	0.000	22.887	0.000	0.044	0.000	1739.505	0.005	1021.742	10.450	10.462	0.263	-9.293	0.000	1784.128	0.004	53.917	0.000	123
126	116	10	-	9.037	0.868	13.219	0.286	0.000	0.000	25.431	1.049	0.038	0.003	1717.020	26.917	1053.345	24.494	5.122	1.014	-4.705	1.799	1910.625	57.426	198.310	32.310	124
127	110	10	-	9.102	0.544	12.595	0.000	0.000	0.000	20.109	0.000	0.055	0.000	1458.440	0.000	1326.795	8.218	10.158	0.491	-2.662	0.000	1484.760	0.000	28.977	0.001	125
128	94	10	-	9.273	0.182	11.377	0.000	0.000	0.000	20.295	0.000	0.055	0.000	1350.680	0.007	1263.432	15.692	4.961	0.186	3.037	0.000	1394.020	0.000	40.300	0.003	126
124	13	10	-	9.465	0.169	13.992	0.000	0.000	0.000	23.157	0.000	0.043	0.000	1146.433	0.013	1120.465	15.556	10.227	0.270	-1.592	0.000	1201.948	0.004	57.108	0.007	127
130	45	10	-	9.550	0.386	9.814	0.000	0.017	0.000	16.010	0.001	0.087	0.000	1554.797	0.004	1074.615	29.539	8.300	0.409	-4.112	0.000	1606.680	0.000	55.995	0.002	128
135	152	10	-	9.610	0.259	15.446	0.000	0.000	0.000	23.011	0.000	0.043	0.000	1665.850	0.000	946.076	8.652	5.728	0.268	-4.098	0.000	1739.930	0.000	78.180	0.001	129
125	93	10	-	9.689	0.119	13.345	0.366	0.000	0.000	23.264	0.111	0.043	0.000	1423.375	94.377	1040.887	98.513	5.578	0.171	-0.319	2.153	1483.550	109.385	60.492	17.162	130
133	115	10	-	9.787	0.539	13.502	0.000	0.034	0.000	22.814	0.000	0.056	0.000	1637.325	0.005	1220.587	16.638	9.947	0.458	-4.921	0.001	1691.818	0.004	59.413	0.004	131
131	114	10	-	9.826	0.114	13.465	0.000	0.000	0.000	20.399	0.000	0.053	0.000	1818.070	0.000	1053.033	18.751	9.771	0.258	-8.246	0.000	1874.900	0.000	65.072	0.001	132
129	3	10	-	10.018	0.127	14.428	0.000	0.034	0.000	22.032	0.000	0.058	0.000	1549.895	0.005	1118.065	42.148	12.787	0.454	-7.537	0.001	1587.460	0.000	45.103	0.003	133
132	119	10	-	10.143	0.318	14.591	0.000	0.000	0.000	23.723	0.000	0.041	0.000	2030.400	0.000	983.656	8.263	4.708	0.325	-5.477	0.000	2069.310	0.000	44.387	0.001	134
136	150	10	-	10.431	0.253	14.509	0.338	0.073	0.007	23.445	0.046	0.067	0.003	2007.825	335.507	1296.773	80.914	10.058	1.357	-7.287	5.448	2055.438	339.336	54.902	9.277	135
150	137	10	-	10.486	0.981	13.674	0.276	0.026	0.009	21.535	0.203	0.057	0.004	1802.435	67.949	850.777	19.785	5.939	1.057	-6.012	0.908	1900.545	36.937	104.120	32.144	136
134	96	10	-	10.666	0.361	14.905	0.000	0.000	0.000	23.611	0.000	0.042	0.000	1180.222	0.008	1197.192	20.594	9.497	0.535	0.430	0.001	1271.465	0.005	90.810	0.004	137
145	130	10	-	10.686	0.215	10.825	0.001	0.069	0.000	18.924	0.000	0.085	0.000	1267.947	0.004	1066.520	11.839	6.859	0.271	0.757	0.000	1374.340	0.000	105.638	0.005	138
137	97	10	-	10.744	0.356	11.161	0.121	0.000	0.000	17.162	0.102	0.071	0.000	1500.715	119.809	1067.945	5.794	12.386	1.759	-6.461	0.315	1543.383	131.415	49.125	11.293	139
138	89	10	-	10.796	0.255	8.739	0.000	0.017	0.000	14.675	0.000	0.099	0.000	1540.630	0.000	1060.565	11.528	12.264	0.289	-6.895	0.000	1596.385	0.005	62.650	0.001	140
141	122	10	-	10.930	0.437	14.198	0.141	0.000	0.000	23.447	0.395	0.043	0.001	1390.735	77.045	1002.527	29.545	8.394	0.193	-1.835	0.884	1437.828	84.728	48.932	8.567	141
139	50	10	-	10.969	0.619	10.602	0.000	0.000	0.000	18.906	0.000	0.063	0.000	1799.200	0.000	766.240	37.212	1.470	0.550	-1.686	0.000	1882.990	0.000	85.470	0.001	142
147	120	10	-	11.521	0.159	4.285	0.000	0.121	0.000	8.527	0.000	0.243	0.000	1526.737	0.004	1528.830	15.598	15.387	0.301	-5.049	0.000	1642.110	0.000	120.418	0.003	143
140	58	10	-	11.638	0.280	11.900	0.000	0.017	0.000	18.863	0.000	0.067	0.000	1899.500	0.000	1081.518	33.994	5.711	0.435	-2.672	0.000	1938.750	0.000	41.925	0.000	144
142	31	10	-	12.238	0.461	13.303	0.000	0.000	0.000	21.021	0.000	0.051	0.000	1406.755	0.009	1096.230	19.810	11.836	0.584	-3.236	0.000	1456.838	0.004	53.317	0.006	145
143	151	10	-	12.714	0.279	7.749	0.000	0.000	0.000	13.417	0.000	0.108	0.000	1964.388	0.004	896.694	19.473	6.427	0.348	-4.948	0.001	2015.227	0.004	55.788	0.002	146
144	129	10	-	12.743	0.384	13.927	0.169	0.000	0.000	20.877	0.157	0.051	0.001	1557.322	37.718	937.363	18.414	7.410	1.237	-1.420	1.619	1611.295	33.980	55.392	2.120	147
146	132	10	-	12.926	0.195	13.916	0.000	0.000	0.000	22.376	0.000	0.046	0.000	1836.933	0.004	878.615	11.559	11.218	0.259	-8.685	0.000	1909.210	0.000	80.959	0.002	148
148	99	10	-	13.625	0.374	9.809	0.371	0.000	0.000	21.326	1.560	0.054	0.006	1819.340	7.577	948.136	21.599	10.081	0.705	-5.718	0.542	1868.615	8.389	54.990	1.051	149
149	86	10	-	14.127	0.142	12.241	0.000	0.000	0.000	20.385	0.001	0.054	0.000	1876.680	0.000	793.395	14.295	7.999	0.164	-5.168	0.000	1917.780	0.000	46.262	0.001	150
151	139	10	-	14.803	0.643	14.398	0.000	0.000	0.000	22.842	0.000	0.044	0.000	1558.020	0.007	877.430	6.677	7.620	0.660	-0.349	0.000	1630.265	0.005	72.595	0.004	151
152	92	10	-	16.300	0.353	12.552	0.000	0.000	0.000	18.676	0.000	0.062	0.000	1163.448	0.008	1243.952	7.434	15.781	0.397	1.090	0.000	1187.940	0.000	23.400	0.002	152


How many clusters are generated?

Is this the same number that after refinement (see above)?

If not what could be the reason?

Consider now the rank of the first acceptable cluster based on iRMSD values. How does this compare with the refined clusters (see above)?

Answer expand_more

After rigid body docking the first acceptable cluster is at rank 41. After refinement it scores at the top with score significantly better than the second-ranked cluster!


We are providing in the scripts directory a simple script that extract some cluster statistics for acceptable or better clusters from the caprieval steps. To use is simply call the script with as argument the run directory you want to analyze, e.g.:

./scripts/extract-capri-stats-clt.sh ./runs/scenario1-surface

View the output of the script expand_more
==============================================
== ./runs/scenario1-surface//4_caprieval/capri_clt.tsv
==============================================
Total number of acceptable or better clusters:  2  out of  152
Total number of medium or better clusters:      1  out of  152
Total number of high quality clusters:          0  out of  152

First acceptable cluster - rank:  43  i-RMSD:  2.535  Fnat:  0.345  DockQ:  0.423
First medium cluster     - rank:  54  i-RMSD:  1.684  Fnat:  0.526  DockQ:  0.622
Best cluster             - rank:  54  i-RMSD:  1.684  Fnat:  0.526  DockQ:  0.622
==============================================
== ./runs/scenario1-surface//9_caprieval/capri_clt.tsv
==============================================
Total number of acceptable or better clusters:  2  out of  127
Total number of medium or better clusters:      1  out of  127
Total number of high quality clusters:          0  out of  127

First acceptable cluster - rank:  1  i-RMSD:  1.678  Fnat:  0.733  DockQ:  0.669
First medium cluster     - rank:  1  i-RMSD:  1.678  Fnat:  0.733  DockQ:  0.669
Best cluster             - rank:  1  i-RMSD:  1.678  Fnat:  0.733  DockQ:  0.669


Similarly some simple statistics can be extracted from the single model caprieval capri_ss.tsv files with the extract-capri-stats.sh script:

./scripts/extract-capri-stats.sh ./runs/scenario1-surface

View the output of the script: expand_more
==============================================
== ./runs/scenario1-surface/4_caprieval/capri_ss.tsv
==============================================
Total number of acceptable or better models:  20  out of  1520
Total number of medium or better models:      8  out of  1520
Total number of high quality models:          0  out of  1520

First acceptable model - rank:  344  i-RMSD:  2.535  Fnat:  0.345  DockQ:  0.423
First medium model     - rank:  491  i-RMSD:  1.282  Fnat:  0.707  DockQ:  0.738
Best model             - rank:  559  i-RMSD:  1.282  Fnat:  0.707  DockQ:  0.738
==============================================
== ./runs/scenario1-surface/9_caprieval/capri_ss.tsv
==============================================
Total number of acceptable or better models:  22  out of  1475
Total number of medium or better models:      13  out of  1475
Total number of high quality models:          0  out of  1475

First acceptable model - rank:  1  i-RMSD:  1.518  Fnat:  0.810  DockQ:  0.722
First medium model     - rank:  1  i-RMSD:  1.518  Fnat:  0.810  DockQ:  0.722
Best model             - rank:  17  i-RMSD:  1.197  Fnat:  0.879  DockQ:  0.811


Note that this kind of analysis only makes sense when we know the reference complex and for benchmarking / performance analysis purposes.

Look at the single structure statistics provided by the script

How does the quality of the model changes after flexible refinement? Consider here the various metrics.

Answer expand_more

In terms of iRMSD values we only observe very small differences in the best models, but the change in ranking is impressive! The fraction of native contacts and the DockQ scores are however improving much more after flexible refinement. All this will of course depend on how different are the bound and unbound conformations and the amount of data used to drive the docking process. In general, from our experience, the more and better data at hand, the larger the conformational changes that can be induced.


Is the best model always ranked as first?

Answer expand_more

This is clearly not the case. The scoring function is not perfect, but does a reasonable job in ranking models of acceptable or better quality on top in this case.


Analysis scenario 1: visualising the scores and their components

We have precalculated a number of interactive plots to visualize the scores and their components versus ranks and model quality.

Examine the plots (remember here that higher DockQ values and lower i-RMSD values correspond to better models)

Models statistics:

Cluster statistics (distributions of values per cluster ordered according to their HADDOCK rank):

For this antibody-antigen case, which of the score component is correlating best with the quality of the models?.


Analysis scenario 2a: Paratope - NMR-epitope as passive

Let us now analyse the docking results for this scenario. Use for that either your own run or a pre-calculated run provided in the runs directory. Go into the analysis/9_caprieval_analysis directory of the respective run directory and

Inspect the final cluster statistics in capri_clt.tsv file

View the pre-calculated 9_caprieval/capri_clt.tsv file expand_more
cluster_rank	cluster_id	n	under_eval	score	score_std	irmsd	irmsd_std	fnat	fnat_std	lrmsd	lrmsd_std	dockq	dockq_std	air	air_std	bsa	bsa_std	desolv	desolv_std	elec	elec_std	total	total_std	vdw	vdw_std	caprieval_rank
1	7	10	-	-138.617	3.623	1.302	0.095	0.759	0.042	3.654	0.845	0.723	0.042	106.923	15.255	2007.338	29.881	4.998	2.064	-535.045	31.312	-475.421	23.968	-47.299	4.337	1
2	2	17	-	-114.732	8.026	14.934	0.048	0.069	0.000	23.085	0.282	0.066	0.001	160.053	15.937	1925.930	68.200	4.355	4.005	-383.893	65.058	-282.153	44.813	-58.313	7.769	2
3	6	10	-	-94.885	3.118	5.158	0.190	0.142	0.014	12.677	0.697	0.177	0.010	195.712	3.139	1678.185	4.775	8.844	0.929	-326.919	4.813	-189.123	5.020	-57.916	4.522	3
4	1	20	-	-85.733	5.280	8.889	0.683	0.116	0.049	17.160	0.949	0.115	0.023	212.853	21.459	1542.527	57.393	6.435	2.591	-328.754	32.768	-163.602	15.475	-47.702	7.750	4
5	5	10	-	-77.835	3.974	4.405	0.344	0.207	0.086	10.394	1.197	0.239	0.050	177.651	29.362	1644.388	54.484	11.269	2.084	-365.089	43.590	-221.289	30.831	-33.852	8.784	5
6	4	10	-	-69.846	2.776	6.854	0.076	0.142	0.007	14.212	0.179	0.150	0.004	305.336	14.743	1491.412	41.939	4.152	1.676	-302.880	31.549	-41.500	23.024	-43.955	4.249	6
7	3	10	-	-52.284	6.453	4.930	0.161	0.125	0.033	12.482	0.704	0.176	0.018	356.568	28.814	1228.580	69.244	5.359	1.823	-299.986	38.202	23.279	48.112	-33.303	2.374	7


How many clusters are generated?

Look at the score of the first few clusters: Are they significantly different if you consider their average scores and standard deviations?

Since for this tutorial we have at hand the crystal structure of the complex, we provided it as reference to the caprieval modules. This means that the iRMSD, lRMSD, Fnat and DockQ statistics report on the quality of the docked model compared to the reference crystal structure.

How many clusters of acceptable or better quality have been generate according to CAPRI criteria?

What is the rank of the best cluster generated?

What is the rank of the first acceptable of better cluster generated?

In this run we also had a caprieval after the clustering of the rigid body models (step 4 of our workflow).

Inspect the corresponding capri_clt.tsv file

View the pre-calculated 4_caprieval/capri_clt.tsv file expand_more
cluster_rank	cluster_id	n	under_eval	score	score_std	irmsd	irmsd_std	fnat	fnat_std	lrmsd	lrmsd_std	dockq	dockq_std	air	air_std	bsa	bsa_std	desolv	desolv_std	elec	elec_std	total	total_std	vdw	vdw_std	caprieval_rank
1	1	10	-	-7.065	0.204	14.798	0.000	0.069	0.000	23.304	0.000	0.066	0.000	800.213	0.006	1705.220	15.183	3.034	0.336	-1.039	0.001	798.194	0.002	-0.980	0.003	1
2	4	10	-	-4.905	0.322	1.247	0.000	0.690	0.000	2.258	0.000	0.738	0.000	830.946	0.006	1750.490	10.557	12.935	0.295	-8.707	0.001	828.476	0.002	6.237	0.004	2
3	5	10	-	-3.218	0.321	12.988	0.000	0.069	0.000	21.389	0.000	0.073	0.000	1250.720	0.007	1281.875	12.910	-2.070	0.282	-1.521	0.000	1317.727	0.004	68.529	0.003	3
4	6	10	-	-2.754	0.136	5.104	0.000	0.138	0.000	12.428	0.000	0.179	0.000	1109.805	0.005	1381.213	18.673	3.933	0.265	-4.214	0.000	1129.680	0.000	24.088	0.003	4
5	3	10	-	-2.534	0.181	8.639	0.000	0.121	0.000	16.823	0.000	0.118	0.000	1115.398	0.004	1139.723	20.158	4.226	0.286	-6.851	0.000	1141.970	0.000	33.428	0.001	5
6	2	10	-	0.099	0.314	9.991	0.000	0.052	0.000	18.505	0.001	0.083	0.000	1069.392	0.061	1148.727	27.538	7.879	0.518	-7.227	0.001	1086.138	0.023	23.972	0.039	6
7	8	10	-	3.994	0.158	4.033	0.001	0.121	0.000	10.360	0.000	0.215	0.000	1343.840	0.000	1164.535	21.845	7.108	0.196	-5.423	0.000	1390.040	0.000	51.623	0.001	7
8	9	10	-	4.619	0.267	7.100	0.000	0.121	0.000	14.167	0.000	0.143	0.000	1523.870	0.007	1134.912	25.058	6.563	0.123	-6.186	0.000	1552.900	0.000	35.217	0.004	8
9	7	10	-	10.174	0.445	4.776	0.000	0.086	0.000	11.416	0.000	0.178	0.000	1954.290	0.000	937.232	7.379	10.179	0.376	-10.952	0.000	2021.017	0.004	77.678	0.002	9


How many clusters are generated?

Is this the same number that after refinement (see above)?

If not what could be the reason?

Consider now the rank of the first acceptable cluster based on iRMSD values. How does this compare with the refined clusters (see above)?

Answer expand_more

After rigid body docking the first acceptable cluster is at rank 2. After refinement it scores at the top with score significantly better than the second-ranked cluster.


Did the rank improve after refinement?

We are providing in the scripts a simple script that extract some cluster statistics for acceptable or better clusters from the caprieval steps. To use is simply call the script with as argument the run directory you want to analyze, e.g.:

./scripts/extract-capri-stats-clt.sh ./runs/scenario2a-NMR-epitope-pass

View the output of the script expand_more
==============================================
== ./runs/scenario2a-NMR-epitope-pass/4_caprieval/capri_clt.tsv
==============================================
Total number of acceptable or better clusters:  1  out of  9
Total number of medium or better clusters:      1  out of  9
Total number of high quality clusters:          0  out of  9

First acceptable cluster - rank:  2  i-RMSD:  1.247  Fnat:  0.690  DockQ:  0.738
First medium cluster     - rank:  2  i-RMSD:  1.247  Fnat:  0.690  DockQ:  0.738
Best cluster             - rank:  2  i-RMSD:  1.247  Fnat:  0.690  DockQ:  0.738
==============================================
== ./runs/scenario2a-NMR-epitope-pass/9_caprieval/capri_clt.tsv
==============================================
Total number of acceptable or better clusters:  1  out of  7
Total number of medium or better clusters:      1  out of  7
Total number of high quality clusters:          0  out of  7

First acceptable cluster - rank:  1  i-RMSD:  1.302  Fnat:  0.759  DockQ:  0.723
First medium cluster     - rank:  1  i-RMSD:  1.302  Fnat:  0.759  DockQ:  0.723
Best cluster             - rank:  1  i-RMSD:  1.302  Fnat:  0.759  DockQ:  0.723


Similarly some simple statistics can be extracted from the single model caprieval capri_ss.tsv files with the extract-capri-stats.sh script:

./scripts/extract-capri-stats.sh ./runs/scenario2a-NMR-epitope-pass

View the output of the script expand_more
==============================================
== ./runs/scenario2a-NMR-epitope-pass/4_caprieval/capri_ss.tsv
==============================================
Total number of acceptable or better models:  10  out of  90
Total number of medium or better models:      10  out of  90
Total number of high quality models:           1  out of  90

First acceptable model - rank:  11  i-RMSD:  1.247  Fnat:  0.690  DockQ:  0.738
First medium model     - rank:  11  i-RMSD:  1.247  Fnat:  0.690  DockQ:  0.738
Best model             - rank:  16  i-RMSD:  0.980  Fnat:  0.586  DockQ:  0.726
==============================================
== ./runs/scenario2a-NMR-epitope-pass/9_caprieval/capri_ss.tsv
==============================================
Total number of acceptable or better models:  12  out of  87
Total number of medium or better models:      10  out of  87
Total number of high quality models:          0  out of  87

First acceptable model - rank:  1  i-RMSD:  1.300  Fnat:  0.793  DockQ:  0.730
First medium model     - rank:  1  i-RMSD:  1.300  Fnat:  0.793  DockQ:  0.730
Best model             - rank:  5  i-RMSD:  1.029  Fnat:  0.810  DockQ:  0.811


Note that this kind of analysis only makes sense when we know the reference complex and for benchmarking / performance analysis purposes.

Look at the single structure statistics provided by the script

How does the quality of the model changes after flexible refinement? Consider here the various metrics.

Answer expand_more

In terms of iRMSD values we only observe very small differences with a slight increase. The fraction of native contacts and the DockQ scores are however improving much more after flexible refinement. All this will of course depend on how different are the bound and unbound conformations and the amount of data used to drive the docking process. In general, from our experience, the more and better data at hand, the larger the conformational changes that can be induced.


Is the best model always ranked as first?

Answer expand_more

This is clearly not the case. The scoring function is not perfect, but does a reasonable job in ranking models of acceptable or better quality on top in this case.


Analysis scenario 2a: visualizing the scores and their components

Using the default settings (option postprocess=true) in the config files, interactive plots have been automatically generated in the analysis directory of the run. These are useful to visualise the scores and their components versus ranks and model quality.

Examine the plots (remember here that higher DockQ values and lower i-RMSD values correspond to better models)

Models statistics:

Cluster statistics (distributions of values per cluster ordered according to their HADDOCK rank):

For this antibody-antigen case, which of the score component is correlating best with the quality of the models?.


Analysis scenario 2b: Paratope - NMR-epitope as active

Let us now analyse the docking results for this scenario. Use for that either your own run or a pre-calculated run provided in the runs directory. Go into the analysis/9_caprieval_analysis directory of the respective run directory and

Inspect the final cluster statistics in capri_clt.tsv file

View the pre-calculated 9_caprieval/capri_clt.tsv file expand_more
cluster_rank	cluster_id	n	under_eval	score	score_std	irmsd	irmsd_std	fnat	fnat_std	lrmsd	lrmsd_std	dockq	dockq_std	air	air_std	bsa	bsa_std	desolv	desolv_std	elec	elec_std	total	total_std	vdw	vdw_std	caprieval_rank
1	1	17	-	-151.013	2.855	1.957	0.466	0.642	0.060	4.965	0.721	0.593	0.080	61.922	16.739	1986.370	29.972	6.632	4.202	-596.659	47.783	-579.241	41.814	-44.505	9.407	1
2	5	10	-	-144.671	4.375	15.023	0.056	0.073	0.007	24.092	0.434	0.065	0.003	82.575	31.344	2050.332	52.230	1.109	1.544	-454.861	68.487	-435.350	64.144	-63.065	9.264	2
3	4	10	-	-103.148	2.915	9.859	0.357	0.065	0.025	19.699	0.784	0.082	0.011	118.571	18.485	1422.492	48.831	1.077	3.734	-395.524	36.286	-313.930	36.565	-36.977	2.057	3
4	2	11	-	-101.775	9.988	14.811	0.042	0.082	0.014	23.773	0.258	0.069	0.005	112.762	35.542	1733.245	136.770	5.903	1.639	-369.718	13.140	-301.966	31.881	-45.010	9.758	4
5	12	4	-	-101.717	16.264	2.883	0.465	0.414	0.073	6.588	0.667	0.421	0.039	123.812	49.768	1620.057	171.832	8.321	3.108	-510.810	25.365	-407.254	30.156	-20.257	18.482	5
6	6	10	-	-100.286	5.972	5.029	0.078	0.121	0.012	12.377	0.431	0.175	0.007	81.077	18.925	1527.888	25.942	6.652	1.287	-297.121	20.305	-271.666	30.603	-55.622	4.563	6
7	3	10	-	-98.426	7.151	4.147	0.602	0.341	0.092	8.377	1.144	0.324	0.059	163.456	41.462	1654.400	57.204	-1.567	4.125	-331.139	27.013	-214.660	64.132	-46.976	4.973	7
8	9	8	-	-91.198	8.435	3.061	0.163	0.509	0.029	7.763	0.751	0.417	0.024	95.083	5.502	1636.765	120.832	7.456	2.015	-383.475	21.166	-319.859	23.245	-31.468	7.111	8
9	10	8	-	-89.350	5.243	14.907	0.197	0.095	0.019	24.223	0.525	0.072	0.006	108.123	28.325	1698.345	93.675	4.693	2.411	-294.506	48.615	-232.337	53.247	-45.954	8.366	9
10	7	10	-	-78.992	5.846	7.589	0.167	0.164	0.008	16.501	0.352	0.137	0.002	141.345	58.004	1386.070	33.470	-0.716	1.791	-253.702	31.000	-154.028	33.843	-41.671	4.896	10
11	11	6	-	-77.052	4.065	3.956	0.826	0.341	0.071	8.653	1.743	0.327	0.075	171.334	27.914	1501.757	87.948	6.200	3.838	-329.716	23.812	-192.825	44.069	-34.442	5.191	11
12	8	8	-	-67.688	6.454	14.580	0.019	0.086	0.012	23.018	0.239	0.072	0.005	148.451	30.560	1652.513	97.272	3.496	1.602	-203.546	55.957	-100.415	43.751	-45.320	6.620	12

How many clusters of acceptable or better quality have been generate according to CAPRI criteria?

What is the rank of the best cluster generated?

What is the rank of the first acceptable of better cluster generated?

In this run we also had a caprieval after the clustering of the rigid body models (step 4 of our workflow).

Inspect the corresponding capri_clt.tsv file

View the pre-calculated 4_caprieval/capri_clt.tsv file expand_more
cluster_rank	cluster_id	n	under_eval	score	score_std	irmsd	irmsd_std	fnat	fnat_std	lrmsd	lrmsd_std	dockq	dockq_std	air	air_std	bsa	bsa_std	desolv	desolv_std	elec	elec_std	total	total_std	vdw	vdw_std	caprieval_rank
1	6	10	-	-14.099	0.485	2.534	0.060	0.328	0.000	6.091	0.186	0.416	0.006	497.929	84.662	1549.405	36.228	12.766	0.474	-16.378	0.493	484.394	89.658	2.844	5.623	1
2	5	10	-	-13.662	1.131	7.797	0.008	0.138	0.000	16.855	0.109	0.126	0.001	728.546	171.645	1173.928	15.754	-3.900	0.575	-5.855	0.132	777.477	174.737	54.786	8.386	2
3	1	10	-	-11.313	0.323	1.048	0.090	0.737	0.026	2.716	0.487	0.772	0.017	393.784	59.151	1658.795	79.415	11.225	0.683	-9.950	0.631	390.030	72.124	6.196	17.950	3
4	3	10	-	-9.839	0.266	5.023	0.016	0.168	0.007	12.101	0.046	0.194	0.003	408.853	105.262	1349.137	18.104	5.414	0.889	-5.624	0.400	380.563	108.924	-22.667	6.196	4
5	4	10	-	-9.326	1.678	14.812	0.010	0.069	0.000	23.503	0.056	0.065	0.000	380.995	98.521	1677.188	22.301	5.271	1.050	-1.377	0.204	353.849	106.067	-25.768	7.771	5
7	11	10	-	-9.256	0.749	4.689	0.384	0.237	0.019	10.175	0.794	0.248	0.021	997.843	119.928	1262.298	9.238	-4.968	0.214	-1.769	1.706	1008.617	125.287	12.542	8.265	6
6	2	10	-	-8.233	0.486	10.223	0.245	0.026	0.015	21.128	0.934	0.062	0.009	581.415	155.264	1036.009	53.300	1.424	0.492	-5.174	1.459	582.590	159.417	6.348	8.379	7
8	7	10	-	-3.262	0.604	14.741	0.012	0.069	0.000	23.565	0.052	0.065	0.000	676.043	49.459	1149.500	14.839	9.827	0.292	-8.472	0.095	679.402	52.646	11.831	3.553	8
10	8	10	-	-2.096	1.711	3.685	0.709	0.272	0.041	8.101	1.996	0.321	0.068	708.926	377.133	1167.398	7.469	11.135	1.233	-8.820	2.498	717.466	390.544	17.360	15.407	9
9	9	10	-	-1.996	0.489	3.210	0.084	0.332	0.026	8.203	0.501	0.343	0.009	398.137	131.501	1060.155	56.080	12.793	0.944	-8.149	1.179	387.985	134.607	-2.003	5.126	10
12	10	10	-	-1.280	2.048	14.353	0.513	0.038	0.008	22.816	0.551	0.057	0.003	869.164	86.949	1255.027	53.327	6.427	3.491	-4.390	2.183	918.969	91.260	54.194	7.974	11
11	12	10	-	-1.104	3.228	14.742	0.077	0.052	0.000	24.131	0.342	0.058	0.001	574.145	40.525	1146.227	48.875	4.858	2.295	-0.342	0.112	583.846	49.827	10.042	11.138	12


How many clusters are generated?

Is this the same number that after refinement (see above)?

If not what could be the reason?

Consider again the rank of the first acceptable cluster based on iRMSD values. How does this compare with the refined clusters (see above)?

Answer expand_more

After rigid body docking the first acceptable cluster is at rank 1 and the same is true after refinement, but the iRMSD values have improved.


Use the extract-capri-stats-clt.sh script to extract some simple cluster statistics for this run.

./scripts/extract-capri-stats-clt.sh runs/scenario2b-NMR-epitope-act/

View the output of the script expand_more
==============================================
== runs/scenario2b-NMR-epitope-act//4_caprieval/capri_clt.tsv
==============================================
Total number of acceptable or better clusters:  4  out of  12
Total number of medium or better clusters:      1  out of  12
Total number of high quality clusters:          0  out of  12

First acceptable cluster - rank:  1  i-RMSD:  2.534  Fnat:  0.328  DockQ:  0.416
First medium cluster     - rank:  3  i-RMSD:  1.048  Fnat:  0.737  DockQ:  0.772
Best cluster             - rank:  3  i-RMSD:  1.048  Fnat:  0.737  DockQ:  0.772
==============================================
== runs/scenario2b-NMR-epitope-act//9_caprieval/capri_clt.tsv
==============================================
Total number of acceptable or better clusters:  4  out of  12
Total number of medium or better clusters:      1  out of  12
Total number of high quality clusters:          0  out of  12

First acceptable cluster - rank:  1  i-RMSD:  1.957  Fnat:  0.642  DockQ:  0.593
First medium cluster     - rank:  1  i-RMSD:  1.957  Fnat:  0.642  DockQ:  0.593
Best cluster             - rank:  1  i-RMSD:  1.957  Fnat:  0.642  DockQ:  0.593


Similarly some simple statistics can be extracted from the single model caprieval capri_ss.tsv files with the extract-capri-stats.sh script:

./scripts/extract-capri-stats.sh ./runs/scenario2b-NMR-epitope-pass

View the output of the script expand_more
==============================================
== runs/scenario2b-NMR-epitope-act//4_caprieval/capri_ss.tsv
==============================================
Total number of acceptable or better models:  34  out of  120
Total number of medium or better models:      10  out of  120
Total number of high quality models:           2  out of  120

First acceptable model - rank:   2  i-RMSD:  2.533  Fnat:  0.328  DockQ:  0.416
First medium model     - rank:  11  i-RMSD:  1.035  Fnat:  0.724  DockQ:  0.757
Best model             - rank:  19  i-RMSD:  0.978  Fnat:  0.741  DockQ:  0.779
==============================================
== runs/scenario2b-NMR-epitope-act//9_caprieval/capri_ss.tsv
==============================================
Total number of acceptable or better models:  35  out of  112
Total number of medium or better models:      11  out of  112
Total number of high quality models:           4  out of  112

First acceptable model - rank:   1  i-RMSD:  2.431  Fnat:  0.586  DockQ:  0.515
First medium model     - rank:   3  i-RMSD:  1.922  Fnat:  0.638  DockQ:  0.597
Best model             - rank:  10  i-RMSD:  0.758  Fnat:  0.845  DockQ:  0.871


Note that this kind of analysis only makes sense when we know the reference complex and for benchmarking / performance analysis purposes.

Look at the single structure statistics provided by the script

How does the quality of the model changes after flexible refinement? Consider here the various metrics.

Answer expand_more

In this case we observe a small improvement in terms of iRMSD values and quite some large improvement in the fraction of native contacts and the DockQ scores. Also the single model rankings have improved, but the top ranked model is not the best one.


Is the best model always ranked as first?

Answer expand_more

This is clearly not the case. The scoring function is not perfect, but does a reasonable job in ranking models of acceptable or better quality on top in this case.


Analysis scenario 2b: visualizing the scores and their components

We have precalculated a number of interactive plots to visualize the scores and their components versus ranks and model quality.

Examine the plots (remember here that higher DockQ values and lower i-RMSD values correspond to better models)

Models statistics:

Cluster statistics (distributions of values per cluster ordered according to their HADDOCK rank):

For this antibody-antigen case, which of the score component is correlating best with the quality of the models?.


Comparing the performance of the three scenarios

Clearly all three scenarios give good results with an acceptable cluster in all three cases ranked at the top:

==============================================
== ./runs/scenario1-surface/9_caprieval/capri_ss.tsv
==============================================
Total number of acceptable or better models:  22  out of  1475
Total number of medium or better models:      13  out of  1475
Total number of high quality models:           0  out of  1475

First acceptable model - rank:   1  i-RMSD:  1.518  Fnat:  0.810  DockQ:  0.722
First medium model     - rank:   1  i-RMSD:  1.518  Fnat:  0.810  DockQ:  0.722
Best model             - rank:  17  i-RMSD:  1.197  Fnat:  0.879  DockQ:  0.811

==============================================
== runs/scenario2b-NMR-epitope-act//4_caprieval/capri_clt.tsv
==============================================
Total number of acceptable or better clusters:  4  out of  12
Total number of medium or better clusters:      1  out of  12
Total number of high quality clusters:          0  out of  12

First acceptable cluster - rank:  1  i-RMSD:  2.534  Fnat:  0.328  DockQ:  0.416
First medium cluster     - rank:  3  i-RMSD:  1.048  Fnat:  0.737  DockQ:  0.772
Best cluster             - rank:  3  i-RMSD:  1.048  Fnat:  0.737  DockQ:  0.772

==============================================
== runs/scenario2b-NMR-epitope-act//9_caprieval/capri_clt.tsv
==============================================
Total number of acceptable or better clusters:  4  out of  12
Total number of medium or better clusters:      1  out of  12
Total number of high quality clusters:          0  out of  12

First acceptable cluster - rank:  1  i-RMSD:  1.957  Fnat:  0.642  DockQ:  0.593
First medium cluster     - rank:  1  i-RMSD:  1.957  Fnat:  0.642  DockQ:  0.593
Best cluster             - rank:  1  i-RMSD:  1.957  Fnat:  0.642  DockQ:  0.593

The best models are obtained when combining the information about the paratope with the NMR epitope defined as passive for HADDOCK, which is also the scenario described in our Structure 2020 article:

What is striking here is that the surface-based protocol (scenario1) is givin now thanks to the clustering step after the rigid-body docking step an excellent solution ranking on top, while these would not make through the refinement stage in the static HADDOCK2.4 protocol (or only very few that would not cluster at the end). Check for comparison our the related HADDOCK2.4 tutorial where you can find l-RMSD values for the surface scenario. Of course, due to the increased sampling it is also more costly.



Visualization of the models

To visualize the models from top cluster of your favorite run, start PyMOL and load the cluster representatives you want to view, e.g. this could be the top model from cluster1 of scenario2a. These can be found in the runs/scenario2a-NMR-epitope-pass/8_seletopclusts/ directory

File menu -> Open -> select cluster_1_model_1.pdb

If you want to get an impression of how well defined a cluster is, repeat this for the best N models you want to view (cluster_1_model_X.pdb). Also load the reference structure from the pdbs directory, 4G6M-matched.pdb.

PyMol can also be started from the command line with as argument all the PDB files you want to visualize, e.g.:

pymol runs/scenario2a-NMR-epitope-pass/8seletopclusts/cluster_1_model[1-4].pdb pdbs/4G6M-matched.pdb

Once all files have been loaded, type in the PyMOL command window:

show cartoon util.cbc color yellow, 4G6M_matched

Let us then superimpose all models on the reference structure:

alignto 4G6M_matched

How close are the top4 models to the reference? Did HADDOCK do a good job at ranking the best in the top?

Let’s now check if the active residues which we have defined (the paratope and epitope) are actually part of the interface. In the PyMOL command window type:

select paratope, (resi 31+32+33+34+35+52+54+55+56+100+101+102+103+104+105+106+1031+1032+1049+1050+1053+1091+1092+1093+1094+1096 and chain A) color red, paratope select epitope, (resi 72+73+74+75+81+83+84+89+90+92+94+96+97+98+115+116+117 and chain B) color orange, epitope

Are the residues of the paratope and NMR epitope at the interface?

Note: You can turn on and off a model by clicking on its name in the right panel of the PyMOL window.

See the overlay of the best model onto the reference structure expand_more

Top4 models of the top cluster of scenario2a superimposed onto the reference crystal structure (in yellow)




Conclusions

We have demonstrated three different scenarios for antibody-antigen modelling, all making use of the paratope information on the antibody side and either no information (surface) or a NMR-mapped epitope for the other two scenarios. Compared to the static HADDOCK2.X workflow, the modularity and flexibility of HADDOCK3 allowed to implement a clustering step after rigid-body sampling and select all resulting clusters for refinement. This strategy led to excellent results in this case while no single acceptable cluster was obtained with HADDOCK2.4. While HADDOCK3 is still very much work in progress, those results indicate already that we should be able to improve the performance of antibody-antigen modelling compared to the results we presented in our Structure 2020 article and in the related HADDOCK2.4 tutorial.



Congratulations! 🎉

You have completed this tutorial. If you have any questions or suggestions, feel free to contact us via email or asking a question through our support center.

And check also our education web page where you will find more tutorials!



A look into the future Virtual Research Environment for HADDOCK3

In the context of a project with the Netherlands e-Science Center we are working on building a Virtual Research Environment (VRE) for HADDOCK3 that will allow you to build and edit custom workflows, execute those on a variety of infrastructures (grid, cloud, local, HPC) and provide an interactive analysis platform for analyzing your HADDOCK3 results. This is work in progress but you can already take a glimpse of the first component, the workflow builder, here.

All the HADDOCK3 VRE software development is open and can be followed from our GitHub i-VRESSE repository.

So stay tuned!