Source code for haddock.clis.re.clustrmsd

"""haddock3-re clustrmsd subcommand."""
from pathlib import Path
import numpy as np

from haddock import log
from haddock.core.defaults import INTERACTIVE_RE_SUFFIX
from haddock.core.typing import Union, Optional
from haddock.gear.config import load as read_config
from haddock.gear.config import save as save_config
from haddock.modules import get_module_steps_folders
from haddock.libs.libclust import (
    add_cluster_info,
    clustrmsd_tolerance_params,
    get_cluster_matrix_plot_clt_dt,
    plot_cluster_matrix,
    rank_clusters,
    write_structure_list,
    )
from haddock.libs.libinteractive import look_for_capri, rewrite_capri_tables
from haddock.libs.libontology import ModuleIO
from haddock.modules.analysis.clustrmsd.clustrmsd import (
    get_clusters,
    get_matrix_path,
    iterate_min_population,
    order_clusters,
    write_clusters,
    write_clustrmsd_file,
    )


[docs] def add_clustrmsd_arguments(clustrmsd_subcommand): """Add arguments to the clustrmsd subcommand.""" clustrmsd_subcommand.add_argument( "clustrmsd_dir", help="The clustrmsd directory to recluster.", ) clustrmsd_subcommand.add_argument( "-n", "--n_clusters", help="number of clusters to generate.", required=False, type=int, ) clustrmsd_subcommand.add_argument( "-d", "--clust_cutoff", help="clustering cutoff distance.", required=False, type=float, ) clustrmsd_subcommand.add_argument( "-t", "--min_population", help="minimum cluster population.", required=False, type=int, ) clustrmsd_subcommand.add_argument( "-p", "--plot_matrix", help="Generate the matrix plot with the clusters.", required=False, default=False, action='store_true', ) return clustrmsd_subcommand
[docs] def reclustrmsd( clustrmsd_dir: str, n_clusters: Union[bool, int] = None, clust_cutoff: Union[bool, float] = None, min_population: Union[bool, int] = None, plot_matrix: bool = True, ) -> Path: """ Recluster the models in the clustrmsd directory. Parameters ---------- clustrmsd_dir : str Path to the clustrmsd directory. n_clusters : Union[bool, int] Number of clusters to generate. clust_cutoff : Union[bool, float] Clustering cutoff distance. min_population : Union[bool, int] Cluster population min_population. plot_matrix : bool Should the corresponding matrix plot be generated. Returns ------- outdir : Path Path to the interactive directory. """ log.info(f"Reclustering {clustrmsd_dir}") run_dir = Path(clustrmsd_dir).parent clustrmsd_name = Path(clustrmsd_dir).name # create the interactive folder outdir = Path(run_dir, f"{clustrmsd_name}_{INTERACTIVE_RE_SUFFIX}") outdir.mkdir(exist_ok=True) # create an io object io = ModuleIO() filename = Path(clustrmsd_dir, "io.json") io.load(filename) models = io.input # load the original clustering parameters via json clustrmsd_params = read_config(Path(clustrmsd_dir, "params.cfg")) key = list(clustrmsd_params['final_cfg'].keys())[0] clustrmsd_params = clustrmsd_params['final_cfg'][key] log.info(f"Previous clustering parameters: {clustrmsd_params}") # setting previous tolerance, just in case no new parameters are given tolerance_param_name, tolerance = clustrmsd_tolerance_params( clustrmsd_params, ) # adjust the parameters if n_clusters is not None: clustrmsd_params["n_clusters"] = n_clusters clustrmsd_params["criterion"] = "maxclust" tolerance = n_clusters else: if clust_cutoff is not None: clustrmsd_params["clust_cutoff"] = clust_cutoff clustrmsd_params["criterion"] = "distance" tolerance = clust_cutoff if min_population is not None: clustrmsd_params["min_population"] = min_population clustrmsd_params["plot_matrix"] = plot_matrix log.info( f"Clustering with {tolerance_param_name} = {tolerance}, " f"and criterion {clustrmsd_params['criterion']}" ) # load the clustering dendrogram dendrogram = np.loadtxt(Path(clustrmsd_dir, "dendrogram.txt")) # get the clusters cluster_arr = get_clusters( dendrogram, tolerance, clustrmsd_params["criterion"], ) log.info(f"clusters {cluster_arr}") if clustrmsd_params['criterion'] == "distance": cluster_arr, min_population = iterate_min_population( cluster_arr, clustrmsd_params['min_population'] ) clustrmsd_params['min_population'] = min_population log.info(f"Updated clustering parameters = {clustrmsd_params}") # processing the clusters clusters, cluster_arr = order_clusters(cluster_arr) log.info(f"clusters = {clusters}") log.info(f"cluster_arr = {cluster_arr}") clt_dic, cluster_centers = write_clusters( clusters, cluster_arr, models, out_filename=Path(outdir, "cluster.out"), rmsd_matrix=None, centers=False ) score_dic, sorted_score_dic = rank_clusters( clt_dic, clustrmsd_params["min_population"] ) output_models = add_cluster_info(sorted_score_dic, clt_dic) write_structure_list( models, output_models, out_fname=Path(outdir, "clustrmsd.tsv"), ) write_clustrmsd_file( clusters, clt_dic, cluster_centers, score_dic, sorted_score_dic, clustrmsd_params, output_fname=Path(outdir, "clustrmsd.txt"), ) # Draw the matrix if clustrmsd_params["plot_matrix"]: if not (matrix_json_path := search_previousstep_matrix(clustrmsd_dir)): log.warn( "Could not find the rmsd matrix in previous step." " Unable to produce a graph out of it!" ) else: log.info("Generating graphical representation of the clusters.") matrix_io = ModuleIO() matrix_io.load(matrix_json_path) # Obtain final models indices final_order_idx, labels, cluster_ids = [], [], [] for pdb in output_models: final_order_idx.append(models.index(pdb)) labels.append(pdb.file_name.replace('.pdb', '')) cluster_ids.append(pdb.clt_id) # Get custom cluster data matrix_cluster_dt, cluster_limits = get_cluster_matrix_plot_clt_dt( cluster_ids ) # Define output filename html_matrix_basepath = Path(outdir, 'rmsd_matrix') # Plot matrix html_matrixpath = plot_cluster_matrix( get_matrix_path(matrix_io.input[0]), final_order_idx, labels, dttype='RMSD(Å)', reverse=True, diag_fill=0, output_fname=html_matrix_basepath, matrix_cluster_dt=matrix_cluster_dt, cluster_limits=cluster_limits, ) log.info(f"Plotting matrix in {html_matrixpath}") # save the io.json file io.save(outdir) # save the updated parameters in a json file save_config(clustrmsd_params, Path(outdir, "params.cfg")) # analysis clustrmsd_id = int(clustrmsd_name.split("_")[0]) caprieval_folder = look_for_capri(run_dir, clustrmsd_id) if caprieval_folder: log.info("Rewriting capri tables") rewrite_capri_tables(caprieval_folder, clt_dic, outdir) return outdir
[docs] def search_previousstep_matrix(clustrmsd_dir: str) -> Optional[Path]: """Retrieve the path of the previous step matrix_json file. Parameters ---------- clustrmsd_dir : str Path to the clustrmsd directory. Returns ------- matrix_json : Optional[Path] Path to the matrix_json file. """ # Compute previous step index previous_step_ind = int(str(Path(clustrmsd_dir).name).split('_')[0]) - 1 workflow_dir = Path(clustrmsd_dir).parent # Try to get previous step directory name try: previous_steps = get_module_steps_folders( workflow_dir, [previous_step_ind], ) previous_step = previous_steps[0] except IndexError: return None else: matrix_json = Path(workflow_dir, previous_step, "rmsd_matrix.json") if matrix_json.exists(): return matrix_json