Source code for haddock.libs.libclust

"""
Library of functions related to the clustering modules.

Main functions
--------------

* :py:func:`write_unclustered_list`
* :py:func:`plot_cluster_matrix`
"""

import os
from pathlib import Path

from haddock import log
from haddock.core.typing import FilePath, Union, ParamDictT, Optional
from haddock.libs.libontology import PDBFile
from haddock.libs.libplots import heatmap_plotly

import numpy as np
from scipy.spatial.distance import squareform


MAX_NB_ENTRY_HTML_MATRIX = 3100


[docs] def write_structure_list(input_models: list[PDBFile], clustered_models: list[PDBFile], out_fname: FilePath) -> None: """ Get the list of unclustered structures. Parameters ---------- input_models : list list of input models clustered_models : list list of clustered models """ output_fname = Path(out_fname) output_str = f'rank\tmodel_name\tscore\tcluster_id{os.linesep}' structure_list: list[PDBFile] = [] # checking which input models have not been clustered for model in input_models: if model not in clustered_models: model.clt_id = "-" structure_list.append(model) # extending and sorting structure_list.extend(clustered_models) structure_list.sort(key=lambda model: model.score) # adding models to output string for mdl_rank, mdl in enumerate(structure_list, start=1): output_str += ( f'{mdl_rank}\t{mdl.file_name}\t{mdl.score:.2f}\t{mdl.clt_id}' f'{os.linesep}' ) output_str += os.linesep log.info(f'Saving structure list to {out_fname}') with open(output_fname, 'w') as out_fh: out_fh.write(output_str)
[docs] def plot_cluster_matrix( matrix_path: Union[Path, FilePath, str], final_order_idx: list[int], labels: list[str], dttype: str = '', diag_fill: Union[int, float] = 1, color_scale: str = "Blues", reverse: bool = False, output_fname: Union[str, Path, FilePath] = 'clust_matrix', matrix_cluster_dt: Optional[list[list[list[int]]]] = None, cluster_limits: Optional[list[dict[str, float]]] = None, ) -> Optional[str]: """Plot a plotly heatmap of a matrix file. Parameters ---------- matrix_path : Union[Path, FilePath, str] Path to a half-matrix final_order_idx : list[int] Index orders labels : list[str] Ordered labels dttype : str Name of the data type, by default `` color_scale : str, optional Color scale for the plot, by default "Blues" reversed : bool, optional Should the color scale be reversed ?, by default False output_fname : Union[str, Path, FilePath], optional Name of the output file to generate, by default 'clust_matrix.html' matrix_cluster_dt: Optional[list[list[list[int]]]] A matrix of cluster ids, used for extra hover annotation in plotly. cluster_limits: Optional[list[dict[str, float]]] A list of dict enabling to draw lines separating cluster ids. Return ------ output_fname_ext : str Path to the generated file containing the figure. """ # Check that we will be able to generate a functional interactive plot if len(final_order_idx) > MAX_NB_ENTRY_HTML_MATRIX: return None upper_diag, lower_diag = [], [] # Read matrix with open(matrix_path, 'r') as f: # Loop over lines for _ in f: # Split line s_ = _.strip().split() # Point first value uv = float(s_[2]) # Point second value (if exists) lv = float(s_[3]) if len(s_) == 4 else uv # Hold them upper_diag.append(uv) lower_diag.append(lv) # Genereate full matrix from N*(N-1)/2 vector upper_matrix = squareform(upper_diag) lower_matrix = squareform(lower_diag) # Update diagonal with data np.fill_diagonal(upper_matrix, diag_fill) # Full matrix (lower triangle + upper triangle) full_matrix = np.tril(lower_matrix, k=-1) + np.triu(upper_matrix) # Extract submatrix of selected models and re-order them submat = full_matrix[np.ix_(final_order_idx, final_order_idx)] # Check if must reverse the colorscale if reverse: if color_scale[-2:] == '_r': color_scale = color_scale[:-2] else: color_scale += '_r' # Define hovering tempalte string if matrix_cluster_dt: hovertemplate = ( f' {dttype}: %{{z}} <br>' f' Model1: %{{x}} ClusterID: %{{customdata[0]}} <br>' f' Model2: %{{y}} ClusterID: %{{customdata[1]}} ' '<extra></extra>' ) else: hovertemplate = ( f' {dttype}: %{{z}} <br>' f' Model1: %{{x}} <br>' f' Model2: %{{y}} ' '<extra></extra>' ) # Generate file name output_fname_ext = f"{output_fname}.html" # Draw heatmap heatmap_plotly( submat, labels={'color': dttype}, xlabels=labels, ylabels=labels, color_scale=color_scale, title=f"{dttype} clustering matrix", output_fname=output_fname_ext, hovertemplate=hovertemplate, customdata=matrix_cluster_dt, delineation_traces=cluster_limits, ) # Return generated filepath return output_fname_ext
[docs] def get_cluster_matrix_plot_clt_dt( cluster_ids: list[int], ) -> tuple[list[list[list[int]]], list[dict[str, float]]]: """Generate cluster matrix data for plotly. Parameters ---------- cluster_ids : list[int] List containing ordered cluster ids. Returns ------- matrix_cluster_dt: list[list[list[int]]] A matrix of cluster ids, used for plotly. cluster_limits: list[dict[str, float]]] Boundaries to draw lines between clusters with plotly. """ # Set custom data matrix_cluster_dt = [ [[clix, cliy] for clix in cluster_ids] for cliy in cluster_ids ] # Build delineation lines del_ind = -0.5 del_posi = [] current_clid = cluster_ids[0] for clid in cluster_ids: if clid != current_clid: del_posi.append(del_ind) current_clid = clid del_ind += 1 cluster_limits = [ { "x0": delpos, "x1": delpos, "y0": -0.5, "y1": len(cluster_ids) - 0.5, } for delpos in del_posi ] + [ { "y0": delpos, "y1": delpos, "x0": -0.5, "x1": len(cluster_ids) - 0.5, } for delpos in del_posi ] return matrix_cluster_dt, cluster_limits
[docs] def rank_clusters(clt_dic, threshold): """ Rank the clusters by their average score. Parameters ---------- clt_dic : :obj:`dict` Dictionary with the clusters. threshold : int Number of models to consider for the average score. Returns ------- score_dic : :obj:`dict` Dictionary with the cluster ID as key and the average score as value. sorted_score_dic : :obj:`list` List of tuples with the cluster ID and the average score, sorted by the average score. """ score_dic = {} for clt_id in clt_dic: score_l = [p.score for p in clt_dic[clt_id]] score_l.sort() denom = float(min(threshold, len(score_l))) top4_score = sum(score_l[:threshold]) / denom score_dic[clt_id] = top4_score sorted_score_dic = sorted(score_dic.items(), key=lambda k: k[1]) return score_dic, sorted_score_dic
[docs] def add_cluster_info(sorted_score_dic, clt_dic): """ Add cluster information to the models. Parameters ---------- sorted_score_dic : :obj:`list` List of tuples with the cluster ID and the average score, sorted by the average score. clt_dic : :obj:`dict` Dictionary with the clusters. Returns ------- output_models : :obj:`list` List of models with the cluster information. """ # Add this info to the models output_models = [] for cluster_rank, _e in enumerate(sorted_score_dic, start=1): cluster_id, _ = _e # sort the models by score clt_dic[cluster_id].sort() # rank the models for model_ranking, pdb in enumerate(clt_dic[cluster_id], start=1): pdb.clt_id = int(cluster_id) pdb.clt_rank = cluster_rank pdb.clt_model_rank = model_ranking output_models.append(pdb) return output_models
[docs] def clustrmsd_tolerance_params( parameters: ParamDictT, ) -> tuple[str, Union[int, float]]: """Provide parameters of interest for clust rmsd. Parameters ---------- parameters : ParamDictT The clustrmsd module parameters Returns ------- tuple[str, Union[int, float]] Name of the tolerance parameter and its value. """ # adjust the parameters if parameters["criterion"] == "maxclust": tolerance_param_name = "n_clusters" tolerance = parameters[tolerance_param_name] else: # Expected to be parameters["criterion"] == "distance" tolerance_param_name = "clust_cutoff" tolerance = parameters[tolerance_param_name] return tolerance_param_name, tolerance