Source code for haddock.libs.libhpc

"""Module in charge of running tasks in HPC."""

import os
import re
import shlex
import subprocess
import time
from pathlib import Path

from haddock import log, modules_defaults_path
from haddock.core.typing import Any, Container, FilePath, Optional
from haddock.gear.yaml2cfg import read_from_yaml_config
from haddock.libs.libsubprocess import CNSJob


STATE_REGEX = r"JobState=(\w*)"

JOB_STATUS_DIC = {
    "PENDING": "submitted",
    "RUNNING": "running",
    "SUSPENDED": "hold",
    "COMPLETING": "running",
    "COMPLETED": "finished",
    "FAILED": "failed",
    "TIMEOUT": "timed-out",
}

TERMINATED_STATUS = (
    "finished",
    "failed",
    "timed-out",
)

# if you change these defaults, change also the values in the
# modules/defaults.cfg file
_tmpcfg = read_from_yaml_config(modules_defaults_path)
HPCScheduler_CONCAT_DEFAULT: int = _tmpcfg["concat"]  # original value 1
HPCWorker_QUEUE_LIMIT_DEFAULT: int = _tmpcfg[
    "queue_limit"
]  # original value 100 # noqa: E501
HPCWorker_QUEUE_DEFAULT: str = _tmpcfg["queue"]  # original value ""
del _tmpcfg


[docs] class HPCWorker: """Defines the HPC Job.""" def __init__( self, tasks: list[CNSJob], num: int, job_id: Optional[int] = None, workfload_manager: str = "slurm", queue: Optional[str] = None, ) -> None: """ Define the HPC job. Parameters ---------- tasks : list of libs.libcns.CNSJob objects num : int The number of the worker. """ self.tasks = tasks log.debug(f"HPCWorker ready with {len(self.tasks)}") self.job_num = num self.job_id = job_id self.job_status = "unknown" self.moddir = Path(tasks[0].envvars["MODDIR"]) self.toppar = tasks[0].envvars["TOPPAR"] self.cns_folder = tasks[0].envvars["MODULE"] module_name = Path(tasks[0].envvars["MODDIR"]).resolve().stem.split("_")[-1] self.job_fname = Path(self.moddir, f"{module_name}_{num}.job") self.workload_manager = workfload_manager self.queue = queue
[docs] def prepare_job_file(self, queue_type: str = "slurm") -> None: """Prepare the job file for all the jobs in the task list.""" job_file_contents = create_job_header_funcs[queue_type]( job_name="haddock3", queue=self.queue, ncores=1, work_dir=self.moddir, stdout_path=self.job_fname.with_suffix(".out"), stderr_path=self.job_fname.with_suffix(".err"), ) job_file_contents += create_CNS_export_envvars( MODDIR=self.moddir, MODULE=self.cns_folder, TOPPAR=self.toppar, ) job_file_contents += f"cd {self.moddir}{os.linesep}" for job in self.tasks: cmd = ( f"{job.cns_exec} < {job.input_file} > {job.output_file}" f"{os.linesep}" ) job_file_contents += cmd self.job_fname.write_text(job_file_contents)
[docs] def run(self) -> None: """Execute the tasks.""" self.prepare_job_file(queue_type=self.workload_manager) cmd = f"sbatch {self.job_fname}" p = subprocess.run(shlex.split(cmd), capture_output=True) self.job_id = int(p.stdout.decode("utf-8").split()[-1]) self.job_status = "submitted"
[docs] def update_status(self) -> str: """Retrieve the status of this worker.""" cmd = f"scontrol show jobid -dd {self.job_id}" p = subprocess.run(shlex.split(cmd), capture_output=True) out = p.stdout.decode("utf-8") # err = p.stderr.decode('utf-8') if out: status = extract_slurm_status(out) self.job_status = JOB_STATUS_DIC[status] else: self.job_status = "finished" return self.job_status
[docs] def cancel(self, bypass_statuses: Container[str] = ("finished", "failed")) -> None: """Cancel the execution.""" if self.update_status() not in bypass_statuses: log.info(f"Canceling {self.job_fname.name} - {self.job_id}") cmd = f"scancel {self.job_id}" _ = subprocess.run(shlex.split(cmd), capture_output=True)
[docs] class HPCScheduler: """Schedules tasks to run in HPC.""" def __init__( self, task_list: list[CNSJob], target_queue: str = HPCWorker_QUEUE_DEFAULT, queue_limit: int = HPCWorker_QUEUE_LIMIT_DEFAULT, concat: int = HPCScheduler_CONCAT_DEFAULT, ) -> None: self.num_tasks = len(task_list) self.queue_limit = queue_limit self.concat = concat # split tasks according to concat level if concat > 1: log.info( f"Concatenating, each .job will produce {concat} " "(or less) models" ) job_list = [task_list[i : i + concat] for i in range(0, len(task_list), concat)] self.worker_list = [HPCWorker(t, j) for j, t in enumerate(job_list, start=1)] # set the queue # (this is outside the comprehension for clarity) if target_queue: for worker in self.worker_list: worker.queue = target_queue log.debug(f"{self.num_tasks} HPC tasks ready.")
[docs] def run(self) -> None: """Run tasks in the Queue.""" # split by maximum number of submission so we do it in batches batch = [ self.worker_list[i : i + self.queue_limit] for i in range(0, len(self.worker_list), self.queue_limit) ] total_batches = len(batch) try: for batch_num, worker_list in enumerate(batch, start=1): log.info(f"> Running batch {batch_num}/{total_batches}") start = time.time() for worker in worker_list: worker.run() # check if those finished completed: bool = False elapsed: float = 0.0 while not completed: # Initiate count of terminated jobs terminated_count: int = 0 # Loop over workers for worker in worker_list: worker.update_status() # Log status if not finished if worker.job_status != "finished": log.info( f">> {worker.job_fname.name}" f" {worker.job_status}" ) # Increment number of terminated works if worker.job_status in TERMINATED_STATUS: terminated_count += 1 # Check if all terminated if terminated_count == len(worker_list): # Set while loop condition completed = True end = time.time() elapsed = end - start else: # use pre-defined waits if len(worker_list) < 10: sleep_timer = 10 elif len(worker_list) < 50: sleep_timer = 30 else: sleep_timer = 60 log.info(f">> Waiting... ({sleep_timer:.2f}s)") time.sleep(sleep_timer) per = (float(batch_num) / float(total_batches)) * 100 log.info( f">> Batch {batch_num}/{total_batches} took " f"{elapsed:.2f}s to finish, {per:.2f}% complete" ) except KeyboardInterrupt as err: self.terminate() raise err
[docs] def terminate(self) -> None: """Terminate all jobs in the queue in a controlled way.""" log.info("Terminate signal received, removing jobs from the queue...") for worker in self.worker_list: worker.cancel() log.info("The jobs in the queue were terminated in a controlled way")
[docs] def create_slurm_header( job_name: FilePath = "haddock3_slurm_job", work_dir: FilePath = ".", stdout_path: FilePath = "haddock3_job.out", stderr_path: FilePath = "haddock3_job.err", queue: Optional[str] = None, ncores: int = 48, ) -> str: """ Create HADDOCK3 Slurm Batch job file. Parameters ---------- job_name : str The name of the job. work_dir : pathlib.Path The working dir of the example. That is, the directory where `input`, `jobs`, and `logs` reside. Injected in `create_job_header`. time : int Time in minutes before job reach TIMEOUT status. **job_params According to `job_setup`. Return ------ str Slurm-based job file for HADDOCK3. """ header = f"#!/usr/bin/env bash{os.linesep}" header += f"#SBATCH -J {job_name}{os.linesep}" if queue: header += f"#SBATCH -p {queue}{os.linesep}" header += f"#SBATCH --nodes=1{os.linesep}" header += f"#SBATCH --tasks-per-node={str(ncores)}{os.linesep}" header += f"#SBATCH --output={stdout_path}{os.linesep}" header += f"#SBATCH --error={stderr_path}{os.linesep}" # commenting the workdir option (not supported by all versions of slurm) # header += f"#SBATCH --workdir={work_dir}{os.linesep}" return header
[docs] def create_torque_header( job_name: FilePath = "haddock3_slurm_job", work_dir: FilePath = ".", stdout_path: FilePath = "haddock3_job.out", stderr_path: FilePath = "haddock3_job.err", queue: Optional[str] = None, ncores: int = 48, ) -> str: """ Create HADDOCK3 Alcazar job file. Parameters ---------- job_name : str The name of the job. work_dir : pathlib.Path The working dir of the example. That is, the directory where `input`, `jobs`, and `logs` reside. Injected in `create_job_header`. **job_params According to `job_setup`. Return ------ str Torque-based job file for HADDOCK3 benchmarking. """ header = f"#!/usr/bin/env tcsh{os.linesep}" header += f"#PBS -N {job_name}{os.linesep}" if queue: header += f"#PBS -q {queue}{os.linesep}" header += f"#PBS -l nodes=1:ppn={str(ncores)}{os.linesep}" header += f"#PBS -S /bin/tcsh{os.linesep}" header += f"#PBS -o {stdout_path}{os.linesep}" header += f"#PBS -e {stderr_path}{os.linesep}" header += f"#PBS -wd {work_dir}{os.linesep}" return header
[docs] def to_torque_time(time: int) -> str: """Convert time in minutes to the form hh:mm:ss. Parameters ---------- time : int Time in minutes. Return ------ hh_mm_ss : str Time in the form for HH:MM:SS """ hours = time // 60 remain_mins = time - (hours * 60) # Convert to hh:mm:ss string hh_mm_ss_l = [hours, remain_mins, 0] # Make sure hours contain at least 2 characters hh_mm_ss = "{0:02d}:{1:02d}:{2:02d}".format(*hh_mm_ss_l) return hh_mm_ss
[docs] def extract_slurm_status(slurm_out: str) -> str: """Extract job status from slurm scontrol stdout. Parameters ---------- slurm_out : str StdOut of `scontrol show jobid -dd {job_id}` command. Return ------ status : str Status of the slurm job. May also return `error`, when job do not exists. """ try: # https://regex101.com/r/M2vbAc/1 status = re.findall(STATE_REGEX, slurm_out)[0] except IndexError: status = "FAILED" return status
[docs] def create_CNS_export_envvars(**envvars: Any) -> str: """Create a string exporting envvars needed for CNS. Parameters ---------- envvars : dict A dictionary containing envvariables where keys are var names and values are the values. Returns ------- str In the form of: export VAR1=VALUE1 export VAR2=VALUE2 export VAR3=VALUE3 """ exports = os.linesep.join( f"export {key.upper()}={value}" for key, value in envvars.items() ) return exports + os.linesep + os.linesep
# the different job submission queues create_job_header_funcs = { "torque": create_torque_header, "slurm": create_slurm_header, }