Source code for haddock.modules.analysis.clustfcc.clustfcc

"""FCC clustering."""

import os
from pathlib import Path

import numpy as np

from haddock import log
from haddock.libs.libfcc import cluster_elements, output_clusters


[docs] def iterate_clustering(pool, min_population_param): """ Iterate over the clustering process until a cluster is found. Parameters ---------- pool : fcc.Pool The pool object containing the fcc matrix. min_population_param : int The min_population parameter to start the clustering process. Returns ------- clusters : list A list of clusters. min_population : int The min_population used to obtain the clusters. """ cluster_check = False while not cluster_check: for min_population in range(min_population_param, 0, -1): log.info(f"Clustering with min_population={min_population}") _, clusters = cluster_elements( pool, threshold=min_population, ) if not clusters: log.info("[WARNING] No cluster was found, decreasing min_population!") else: cluster_check = True # pass the actual min_population back to the param dict # because it will be used in the detailed output break if not cluster_check: # No cluster was obtained in any min_population cluster_check = True return clusters, min_population
[docs] def write_clusters(clusters, out_filename="cluster.out"): """ Write the clusters to the cluster.out file. Parameters ---------- clusters : list A list of clusters. out_filename : str, optional The name of the output file. The default is "cluster.out". Returns ------- None """ # write the classic output file for compatibility reasons log.info(f"Saving output to {out_filename}") cluster_out = Path(out_filename) with open(cluster_out, "w") as fh: output_clusters(fh, clusters) fh.close()
[docs] def get_cluster_centers(clusters, models_to_cluster): """ Get the cluster centers and the cluster dictionary. Parameters ---------- clusters : list A list of clusters. models_to_cluster : list A list of models to cluster. Returns ------- clt_dic : dict A dictionary containing the clusters. clt_centers : dict A dictionary containing the cluster centers. """ clt_dic = {} clt_centers = {} # iterate over the clusters for clt in clusters: cluster_id = clt.name cluster_center_id = clt.center.name - 1 cluster_center_pdb = models_to_cluster[cluster_center_id] clt_dic[cluster_id] = [] clt_centers[cluster_id] = cluster_center_pdb clt_dic[cluster_id].append(cluster_center_pdb) # iterate over the models in the cluster for model in clt.members: model_id = model.name model_pdb = models_to_cluster[model_id - 1] clt_dic[cluster_id].append(model_pdb) return clt_dic, clt_centers
[docs] def write_clustfcc_file( clusters, clt_centers, clt_dic, params, sorted_score_dic, output_fname="clustfcc.txt", ): # noqa: E501 """ Write the clustfcc.txt file. Parameters ---------- clusters : list A list of clusters. clt_centers : dict A dictionary containing the cluster centers. clt_dic : dict A dictionary containing the clusters. params : dict A dictionary containing the clustering parameters. sorted_score_dic : list A list of sorted scores. Returns ------- None """ # Prepare clustfcc.txt output_str = f"### clustfcc output ###{os.linesep}" output_str += os.linesep output_str += f"Clustering parameters {os.linesep}" output_str += ( "> contact_distance_cutoff=" f"{params['contact_distance_cutoff']}A" f"{os.linesep}" ) output_str += f"> clust_cutoff={params['clust_cutoff']}" f"{os.linesep}" output_str += f"> min_population={params['min_population']}{os.linesep}" output_str += f"> strictness={params['strictness']}{os.linesep}" output_str += os.linesep output_str += ( "Note: Models marked with * represent the center of the cluster" f"{os.linesep}" ) output_str += f"-----------------------------------------------{os.linesep}" output_str += os.linesep output_str += f"Total # of clusters: {len(clusters)}{os.linesep}" for cluster_rank, _e in enumerate(sorted_score_dic, start=1): cluster_id, _ = _e center_pdb = clt_centers[cluster_id] model_score_l = [(e.score, e) for e in clt_dic[cluster_id]] model_score_l.sort() # subset_score_l = [e[0] for e in model_score_l][:min_population] subset_score_l = [e[0] for e in model_score_l] subset_score_l = subset_score_l[: params["min_population"]] top_mean_score = np.mean(subset_score_l) top_std = np.std(subset_score_l) output_str += ( f"{os.linesep}" "-----------------------------------------------" f"{os.linesep}" f"Cluster {cluster_rank} (#{cluster_id}, " f"n={len(model_score_l)}, " f"top{params['min_population']}_avg_score = {top_mean_score:.2f} " f"+-{top_std:.2f})" f"{os.linesep}" ) output_str += os.linesep output_str += f"clt_rank\tmodel_name\tscore{os.linesep}" for model_ranking, element in enumerate(model_score_l, start=1): score, pdb = element if pdb.file_name == center_pdb.file_name: output_str += ( f"{model_ranking}\t{pdb.file_name}\t{score:.2f}\t*" f"{os.linesep}" ) else: output_str += ( f"{model_ranking}\t{pdb.file_name}\t{score:.2f}" f"{os.linesep}" ) output_str += "-----------------------------------------------" f"{os.linesep}" log.info("Saving detailed output to clustfcc.txt") with open(output_fname, "w") as out_fh: out_fh.write(output_str) return