Source code for haddock.modules.analysis.clustrmsd

"""
RMSD clustering module.

This module takes in input the RMSD matrix calculated in the previous step and
performs a hierarchical clustering procedure on it, leveraging `scipy routines`_
for this purpose.

Essentially, the procedure amounts at lumping the input models in a
progressively coarser hierarchy of clusters, called the dendrogram.

Four parameters can be defined in this context:

* `linkage`: governs the way clusters are merged together in the creation of
  the dendrogram
* `criterion`: defines the prescription to cut the dendrogram and obtain the
  desired clusters
* `n_clusters`: number of desired clusters (if `criterion` is `maxclust`).
* `clust_cutoff`: value of distance that separates distinct clusters (if `criterion` is
  ``distance``)
* `min_population` : analogously to the `clustfcc` module, it is the minimum number
  of models that should be present in a cluster to consider it. If criterion is
  `maxclust`, the value is ignored.

This module passes the path to the RMSD matrix is to the next step of the
workflow through the `rmsd_matrix.json` file, thus allowing to execute several
`clustrmsd` modules (possibly with different parameters) on the same RMSD
matrix.

.. _scipy routines: https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
"""  # noqa: E501
from pathlib import Path

from haddock import log
from haddock.core.defaults import MODULE_DEFAULT_YAML
from haddock.core.typing import Union
from haddock.libs.libclust import (
    add_cluster_info,
    clustrmsd_tolerance_params,
    get_cluster_matrix_plot_clt_dt,
    plot_cluster_matrix,
    rank_clusters,
    write_structure_list,
    )
from haddock.libs.libontology import ModuleIO
from haddock.modules import BaseHaddockModule
from haddock.modules.analysis.clustrmsd.clustrmsd import (
    get_clusters,
    get_dendrogram,
    get_matrix_path,
    iterate_min_population,
    order_clusters,
    read_matrix,
    write_clusters,
    write_clustrmsd_file,
    )

RECIPE_PATH = Path(__file__).resolve().parent
DEFAULT_CONFIG = Path(RECIPE_PATH, MODULE_DEFAULT_YAML)


[docs] class HaddockModule(BaseHaddockModule): """HADDOCK3 module for clustering with RMSD.""" name = RECIPE_PATH.name def __init__( self, order: int, path: Path, initial_params: Union[Path, str] = DEFAULT_CONFIG, ) -> None: super().__init__(order, path, initial_params) self.matrix_json = self._load_previous_io("rmsd_matrix.json")
[docs] @classmethod def confirm_installation(cls) -> None: """Confirm if contact executable is compiled.""" return
def _run(self) -> None: """Execute module.""" # Get the models generated in previous step models = self.previous_io.retrieve_models() # Cluster rmsd_matrix = read_matrix(self.matrix_json.input[0]) # loading parameters min_population = self.params["min_population"] # getting clusters_list dendrogram = get_dendrogram(rmsd_matrix, self.params["linkage"]) # adjust the parameters tolerance_param_name, tolerance = clustrmsd_tolerance_params( self.params, ) log.info( f"Clustering with {tolerance_param_name} = {tolerance}, " f"and criterion {self.params['criterion']}" ) cluster_arr = get_clusters( dendrogram, tolerance, self.params["criterion"], ) # when crit == distance, apply clustering min_population if self.params['criterion'] == "distance": cluster_arr, min_population = iterate_min_population( cluster_arr, self.params['min_population'], ) self.params['min_population'] = min_population clusters, cluster_arr = order_clusters(cluster_arr) log.info(f"clusters = {clusters}") out_filename = Path('cluster.out') clt_dic, cluster_centers = write_clusters( clusters, cluster_arr, models, rmsd_matrix, out_filename, centers=True, ) # ranking clusters score_dic, sorted_score_dic = rank_clusters( clt_dic, self.params['min_population'], ) self.output_models = add_cluster_info(sorted_score_dic, clt_dic) # Write unclustered structures write_structure_list( models, self.output_models, out_fname="clustrmsd.tsv", ) # type: ignore write_clustrmsd_file( clusters, clt_dic, cluster_centers, score_dic, sorted_score_dic, self.params, ) # Draw the matrix if self.params['plot_matrix']: # Obtain final models indices final_order_idx, labels, cluster_ids = [], [], [] for pdb in self.output_models: final_order_idx.append(models.index(pdb)) labels.append(pdb.file_name.replace('.pdb', '')) cluster_ids.append(pdb.clt_id) # Get custom cluster data matrix_cluster_dt, cluster_limits = get_cluster_matrix_plot_clt_dt( cluster_ids ) # Define output filename html_matrix_basepath = 'rmsd_matrix' # Plot matrix html_matrixpath = plot_cluster_matrix( get_matrix_path(self.matrix_json.input[0]), final_order_idx, labels, dttype='RMSD(Å)', reverse=True, diag_fill=0, output_fname=html_matrix_basepath, matrix_cluster_dt=matrix_cluster_dt, cluster_limits=cluster_limits, ) if html_matrixpath: log.info(f"Plotting matrix in {html_matrixpath}") else: log.warning("Cluster matrix was not generated") self.export_io_models() # sending matrix to next step of the workflow matrix_io = ModuleIO() matrix_io.add(self.matrix_json.input[0]) matrix_io.save(filename="rmsd_matrix.json")