"""Flexible refinement with CNS.
The ``[flexref]`` module (also known as ``it1`` stage in HADDOCK2.X series),
is a semi-flexible simulated annealing (SA) protocol based on molecular
dynamics in torsion angle space.
This semi-flexible SA consists of several stages:
* High temperature rigid body molecular dynamics
* Rigid body SA
* Semi-flexible SA with flexible side-chains at the interface
* Semi-flexible SA with fully flexible interface (both backbone and side-chains)
By default, only the interface regions is treated as flexible. It is automatically
defined based on the intermolecular contacts made. It is also possible to manually
define the semi-flexible regions, and also define fully flexible regions that are
allowed to move throughout the entire protocol from the high temperature rigid
body molecular dynamics on.
The temperature and number of steps for the various stages can be tuned.
"""
from pathlib import Path
from haddock.core.defaults import MODULE_DEFAULT_YAML
from haddock.core.typing import FilePath
from haddock.gear.haddockmodel import HaddockModel
from haddock.libs.libcns import prepare_cns_input, prepare_expected_pdb
from haddock.libs.libontology import PDBFile
from haddock.libs.libsubprocess import CNSJob
from haddock.modules import get_engine
from haddock.modules.base_cns_module import BaseCNSModule
RECIPE_PATH = Path(__file__).resolve().parent
DEFAULT_CONFIG = Path(RECIPE_PATH, MODULE_DEFAULT_YAML)
[docs]
class HaddockModule(BaseCNSModule):
"""HADDOCK3 module for flexible refinement."""
name = RECIPE_PATH.name
def __init__(
self, order: int, path: Path, initial_params: FilePath = DEFAULT_CONFIG
) -> None:
cns_script = Path(RECIPE_PATH, "cns", "flexref.cns")
super().__init__(order, path, initial_params, cns_script=cns_script)
[docs]
@classmethod
def confirm_installation(cls) -> None:
"""Confirm module is installed."""
return
def _run(self) -> None:
"""Execute module."""
# Pool of jobs to be executed by the CNS engine
jobs: list[CNSJob] = []
# Get the models generated in previous step
try:
models_to_refine = self.previous_io.retrieve_models()
except Exception as e:
self.finish_with_error(e)
self.output_models: list[PDBFile] = []
idx = 1
sampling_factor = self.params["sampling_factor"]
if sampling_factor > 1:
self.log(f"sampling_factor={sampling_factor}")
if sampling_factor == 0:
self.log("[Warning] sampling_factor cannot be 0, setting it to 1")
sampling_factor = 1
if sampling_factor > 100:
self.log("[Warning] sampling_factor is larger than 100")
max_nmodels = self.params["max_nmodels"]
nmodels = len(models_to_refine) * sampling_factor
if nmodels > max_nmodels:
self.finish_with_error(
f"Too many models ({nmodels}) to refine, max_nmodels ="
f" {max_nmodels}. Please reduce the number of models or"
" decrease the sampling_factor."
)
# checking the ambig_fname:
try:
prev_ambig_fnames = [mod.restr_fname for mod in models_to_refine]
except Exception as e: # noqa:F841
# cannot extract restr_fname info from tuples
prev_ambig_fnames = [None for model in models_to_refine]
ambig_fnames = self.get_ambig_fnames(prev_ambig_fnames)
model_idx = 0
idx = 1
for model in models_to_refine:
# assign ambig_fname
if ambig_fnames:
ambig_fname = ambig_fnames[model_idx]
else:
ambig_fname = self.params["ambig_fname"]
model_idx += 1
for _ in range(self.params["sampling_factor"]):
# prepare cns input
flexref_input = prepare_cns_input(
idx,
model,
self.path,
self.recipe_str,
self.params,
"flexref",
ambig_fname=ambig_fname,
native_segid=True,
debug=self.params["debug"],
seed=model.seed if isinstance(model, PDBFile) else None,
)
out_file = f"flexref_{idx}.out"
err_fname = f"flexref_{idx}.cnserr"
# create the expected PDBobject
expected_pdb = prepare_expected_pdb(model, idx, ".", "flexref")
expected_pdb.restr_fname = ambig_fname
try:
expected_pdb.ori_name = model.file_name
except AttributeError:
expected_pdb.ori_name = None
self.output_models.append(expected_pdb)
job = CNSJob(flexref_input, out_file, err_fname, envvars=self.envvars)
jobs.append(job)
idx += 1
# Run CNS Jobs
self.log(f"Running CNS Jobs n={len(jobs)}")
Engine = get_engine(self.params["mode"], self.params)
engine = Engine(jobs)
engine.run()
self.log("CNS jobs have finished")
# Get the weights from the defaults
_weight_keys = ("w_vdw", "w_elec", "w_desolv", "w_air", "w_bsa")
weights = {e: self.params[e] for e in _weight_keys}
for pdb in self.output_models:
if pdb.is_present():
haddock_model = HaddockModel(pdb.file_name)
pdb.unw_energies = haddock_model.energies
haddock_score = haddock_model.calc_haddock_score(**weights)
pdb.score = haddock_score
# Save module information
self.export_io_models(faulty_tolerance=self.params["tolerance"])