Source code for haddock.modules.scoring.emscoring

"""EM scoring module.

This module performs energy minimization and scoring of the models generated in
the previous step of the workflow. No restraints are applied during this step.
"""

from pathlib import Path

from haddock.core.defaults import MODULE_DEFAULT_YAML
from haddock.core.typing import FilePath
from haddock.gear.haddockmodel import HaddockModel
from haddock.libs.libcns import prepare_cns_input, prepare_expected_pdb
from haddock.libs.libontology import PDBFile
from haddock.libs.libsubprocess import CNSJob
from haddock.modules import get_engine
from haddock.modules.scoring import CNSScoringModule


RECIPE_PATH = Path(__file__).resolve().parent
DEFAULT_CONFIG = Path(RECIPE_PATH, MODULE_DEFAULT_YAML)


[docs] class HaddockModule(CNSScoringModule): """HADDOCK3 module to perform energy minimization scoring.""" name = RECIPE_PATH.name def __init__( self, order: int, path: Path, initial_params: FilePath = DEFAULT_CONFIG ) -> None: cns_script = Path(RECIPE_PATH, "cns", "emscoring.cns") super().__init__(order, path, initial_params, cns_script=cns_script)
[docs] @classmethod def confirm_installation(cls) -> None: """Confirm module is installed.""" return
def _run(self) -> None: """Execute module.""" # Pool of jobs to be executed by the CNS engine jobs: list[CNSJob] = [] try: models_to_score = self.previous_io.retrieve_models(individualize=True) except Exception as e: self.finish_with_error(e) self.output_models = [] for model_num, model in enumerate(models_to_score, start=1): scoring_input = prepare_cns_input( model_num, model, self.path, self.recipe_str, self.params, "emscoring", native_segid=True, debug=self.params["debug"], seed=model.seed if isinstance(model, PDBFile) else None, ) scoring_out = f"emscoring_{model_num}.out" err_fname = f"emscoring_{model_num}.cnserr" # create the expected PDBobject expected_pdb = prepare_expected_pdb(model, model_num, ".", "emscoring") # fill the ori_name field of expected_pdb expected_pdb.ori_name = model.file_name expected_pdb.md5 = model.md5 expected_pdb.restr_fname = model.restr_fname self.output_models.append(expected_pdb) job = CNSJob(scoring_input, scoring_out, err_fname, envvars=self.envvars) jobs.append(job) # Run CNS Jobs self.log(f"Running CNS Jobs n={len(jobs)}") Engine = get_engine(self.params["mode"], self.params) engine = Engine(jobs) engine.run() self.log("CNS jobs have finished") # Get the weights from the defaults _weight_keys = ("w_vdw", "w_elec", "w_desolv", "w_air", "w_bsa") weights = {e: self.params[e] for e in _weight_keys} # Check for generated output, fail it not all expected files are found for pdb in self.output_models: if pdb.is_present(): haddock_model = HaddockModel(pdb.file_name) pdb.unw_energies = haddock_model.energies haddock_score = haddock_model.calc_haddock_score(**weights) pdb.score = haddock_score output_fname = "emscoring.tsv" self.log(f"Saving output to {output_fname}") self.output(output_fname) self.export_io_models(faulty_tolerance=self.params["tolerance"]) if self.params["per_interface_scoring"]: self.per_interface_output(output_fname)